
Week 1 - HIV Dynamics 
 

Course goals:  

● Tools to understand biological processes. 

● Draw conclusions from data 

● Learn about control, noise, stochastic processes. Epidemics, cells, ecosystems, genes, 

measurements. 

 

Homework: 40%, Final: 60% 

Checked partially 

Book - PMLS Nelson on website 

Level - includes very basic level, the trick is in the synergy. 

 

Why models? 

- Organize data 

- Check hypotheses quantitatively 

- (Predict) - ML is better at “just” prediction.  

- Science as an intelligence agency 

 

HIV Dynamics 

 

Los Alamos (1994) Alan Perelson 

 

 
 



 

What’s happening in the “latent” stage? Is the virus replicating very slowly?  

Physical analogy 

A leaky container that retains water at some level at steady state. 

 
 

At steady state: 

- The rate of flow out must equal the rate of flow in. 

- The rate can be high or low, for as long as in and out are matched 

- How fast the flow in = how fast is the virus replicating in the “latent” stage? 

 

Hypothesis: The virus multiplies rapidly but after the initial episode the body clears it just as 

quickly. The steady state is possible for any rate in for as long as the rate out scales with the 

density.  

- At higher volume: flow out more quickly because mgz+PV = const.  

- “Death must win” the death rate is always a higher power than the generation rate for 

steady state. Baseline generation (no number dependence) means removal proportional 

to number. This way the blood cell population level stays constant in one’s life despite 

producing 500 billion per day. 

- Back to the virus: different people will have different state states, but for each person 

there will be a stable time window. 

 

Question - how to make progress? Too many parameters, not enough data. 

 

  



Ritonavir - Protease inhibitor 

NYC 1994: David Ho, clinical trials. Works amazingly, after a few months, stops working. 

Does not kill the virus but stops the creation of new viruses. 

 

 
 

Qout is fast! 

(100 fold less in ~ 10 days or about 10 fold in 5-6 days.) 

Quot large - this means that Qin the virus replicating like mad! (109 virions per day). 

 

Implications: 

- Fast replication - many mutations created → drug resistence 

- In fact, we will learn, the drug resistance is already there and will simply take over 

- The high replication rate is also why it can escape the immune system. 

 

Hypothesis: if the probability of a mutation is p << 1, for two drugs you need p2, for three drugs 

p3 etc. Therefore the advantage of a cocktail! 

 

  



What led to this discovery? 

- Interdiscinary question / team. 

- Simple physical idea (leaky container) 

- Physics tools (differential equations modeling) 

- New data, quantitatively analyzed, supports or refutes hypotheses 

- Embodys the model (math) and attempts to fit the experimental data. 

 

What does it mean to fit the data? 

- To adjust the model parameters to best reflect the data. Words to watch: “Parametric 

model”, “Inverse problem”, “Infer / learn”.  

- Is the fit good? If it is, the model is “promising”. Promising what: to answer a question. 

Here: 

Question: Why did the first antiviral drugs work for a while, then stop? 

Tools: simple dynamical model + experimental data to fit 

 

What can we learn from the graph?  

- There is actually a short plateau before falling off 

- Not a perfect agreement with exponential decay. But how do we define agreement? 

Modeling the dynamics 

Let’s idealize the system by assuming that the antiviral drug completely stops new 

infections of T cells.We also simplify by assuming that each infected T cell has a fixed chance of 

being cleared in any short time interval. 

 

Relevant processes: 

- Infected T-cells produce free virions 

- Virions infect new cells 

- Infected T-cells die, and are also killed by the immune system = clearance of infected 

cells 

- Immune system clears free virions 

- t<0 before drug, quasi steady state, rate of new T-cell infections = T-cell clearance rate 

- t>0 ideal drugs, completely stops new infections. Therefore, for t>0, the number of 

uninfected cells becomes irrelevant. 

- Mutations happen mostly from reverse transcriptase therefore just once when a cell gets 

infected. 

- Many mutations per unit time → Many infections per unit time 

- Not the same as the new virions created 

 

- With the drug, the uninfected cells become decoupled from the infected or from the 

virions since the virus cannot reproduce. 

 



 
- For short ∆t the probability to get cleared is K*∆t for each of the NI cells.

 
Virions are produced at a rate ɣ and cleared at kV 

 

 

 

Hypotheses to test 

- The virus evolves within a single patient 

- Mutations most likely at the reverse-transcription step, which happens once per 

infection. 

- Find the rate T-cells get infected in the quasi steady state. 

- Data: Nv(t), not the number of infected cells (at the time). 

 

 
 

 

 

 
 

Solving for NI we have    

 

Letting  



 

In   

 
 

For a real leaky container, the rate of outflow depends on the pressure at the bottom, and hence 

on the level of the water; similarly, Equation 1.2 specifies that the clearance (outflow) rate at 

time 𝑡 depends on 𝑁V(𝑡). 

 

If 𝑘I ≫ 𝑘V , then the inflow quickly shuts off, before much has had a chance to run out. After this 

brief transient behavior, 𝑁v should therefore fall exponentially with time, in a way controlled 

by the decay rate constant 𝑘v . 

 

In the opposite extreme case, 𝑘V ≫  𝑘I , the water never drains completely, because in our 

model the rate of outflow goes to zero as the height goes to zero; instead, the water level simply 

tracks the rate of inflow. Thus, again the water level falls exponentially, but this time in a way 

controlled by the inflow decay rate constant 𝑘I. 

 

dNv/dt = -𝑘V Nv + c = 0 → Nv = C/𝑘V 

 

With C slowly decaying controlled by 𝑘I 

Trial solution: 

 

 
  

Works for  

 

 

 

 

How can we have an initial plateau even with two decaying exponentials? We can have one of 

the terms X or the other negative. 

 

We now need to extract parameters from the data. 

Two integration constants: NI0 and NV0 - measured / known. 

3 parameters unknown: kv, kI, beta 

 

The model itself needs to be evaluated critically; all of the assumptions and approximations that 

went into it are, in principle, suspect. 

 

The fits below are bad. Why are they bad? 

 



 
 

Overconstrained: More constraints than parameters: more than 3 data points 

Overfit: More params then constraints - you can fit anything, you “memorize” the points. 

Success: the theory is plausible. Even if there are hidden actors like the infected cells. 

Blind fitting: If the data suggests a trend and we follow it without a theory. Good at summarizing 

the data, bad at extrapolating or explaining. Here we didn’t blind fit, we make a physical model. 

 

Exit from latency 

What happens there? The system gets exhausted, mutations increase, immunity breaks down. 

 
 

 

Informal criterion for falsification 

 

The number of “features” in the data. 4 features, one already used in the solution. Therefore 4 

features for 3 params 



 

Nv(0), slope at plateau, sharpness of transition, slope after plateau, intercept of slope 

 

There is no guarantee that any parameter combination will fit well. 

 

Data is inconsistent with 1/kI = 10 years - therefore virus not slow. 

 

More realistic dynamics with drug (Perelson 2002) 

 

 
 

Nu - uninfected cell, Nx - inactive virions 

𝜺 - fraction remains infective  

𝜺’ = fraction of competent virions produced (can produce more virions) 

Latently infected cells means clearing the infection is very difficult.  



Aside: pulse-chase proliferation / differentiation 

 

“Quantifying the Dynamics of Hematopoiesis by In Vivo IdU Pulse‐Chase, Mass Cytometry, and 

Mathematical Modeling” Cytometry part A (2019) 

 

 

 

 
 

 
 

 



Week 2 - Randomness 
 

If each attempt at catching prey is an independent event, how many attempts are needed for a 

predator to succeed? 

Physical idea: waiting distribution for the next event. 

 

● Bernoulli trial - s - Succeeds with probability 𝜉. 

 

● Two trials: x = s1*½ + s2*¼  

We get after many pairs of trials: (probability ½ “fair coin”) 

Similarly for 3 bits. A uniform distribution between 0 and 1. Similarly drawing from 0..9 

for 1/10 + 1/100 + … 

 

     

  



 

 

● Diploid organisms: two copies from every gene: one from male one from female. 

Together they form a germ cell. Inheritance: ½ to get a copy from grandma.  

(More complicated: transpositions, duplications, mutations…) 

 

Probability mass function 

 

Assume that the experiments are replicable. 

 
-  Note that P(𝓁) is always nonnegative 

- Any discrete probability distribution function is dimensionless 

 
 

Addition of mutually exclusive events E1, E2 

P(E1 or E2) = P(E1)+P(E2) [mutually exclusive] 

When there is overlap: P(E1 or E2) = P(E1) + P(E2) - P(E1 and E2) 

P(not E) = 1-P(E) 

 

Conditional probability 

● A friend offers a bet on a die. You win if the die=5. How risky is the bet? Then someone 

tells you the die is an odd number. Now how risky? Somebody tells you that a coin flip is 

up - now how risky? 

 

P(5) = ⅙ < P(5 | roll is odd) = ⅓  

 

 
 Can can therefore, 

 

  



Similarly,  

 

 
 

The Geometric distribution describes the waiting until success in a 

series of independent trials 

 

 
Normalized because  

 

 
 

Joint distributions 

 
Marginal: 

 
Normalization: 

 
Shannon entropy (in bits) 

 
Mutual information 

 

 
 

 

 

 

The part of entropy of X explained by Y (or vice versa) 



 
 

The Kullback-Leibler Divergence 

Is a measure of how one probability distribution P is different from a second, reference 

probability distribution Q. 

 

 
 

● Statistics: the expected log-likelihood ratio (expected under P) 

● Coding: the expected number of extra bits required to code samples from P using a code 

optimized for Q rather than the code optimized for P 

● Machine learning: the information gain achieved if P would be used instead of Q which is 

currently used. By analogy with information theory, it is called the relative entropy of P 

with respect to Q. 

● Bayesian: a measure of the information gained by revising one's beliefs from the prior 

probability distribution Q to the posterior probability distribution P. In other words, it is the 

amount of information lost when Q is used to approximate P. 

 

The mutual information is the KL divergence between Pxy and PxPy: how different is the joint 

distribution from the marginal, how much more information in Pxy vs. PxPy? 

 

 

  



Medical tests - Prior knowledge 

Imagine the following situation: 

● Random screening, not feeling sick 

● Test is positive. Doctor says test is 97% “accurate”. 

 

Am I sick? For a yes/no question we have: P(sick | positive) 

 

Sensitivity: Truly sick → Test positive = TP, small false negative 

97% Sensitive → 3% false negative  

 

P(sick, +) + P(sick, -) = P(sick) 

 

Selectivity: Healthy → Test negative = TN. Large TN = Small FP 

TN + FP = P(healthy,-) + P(healthy,+) = P(healthy) 

Assume the test has also 97% Selectivity, meaning 3% Positive and healthy (FP). 

 

 

Am I sick? 

 
 

I need to know P(Sick) = 0.9 % this is the prior. Then 

 

P(Sick | Pos) = P(Pos | Sick) P(Sick) / P(pos) 

 

But P(pos) = P(pos,sick) + P(pos, healthy) = P(pos|sick)P(sick) + P(pos|healthy)P(healthy) =  

= 0.97*0.009 + 0.03*0.991 = 0.03846 

Therefore, P(Sick | Pos) = 0.97*0.009 / 0.03846 = 0.227 

Therefore, even though the test is “97% accurate”, you have only ¼ probability of being sick! 

Another way to think about it, is that before the test you had 0.9% Probability of being sick, and 

it increased 25-fold !  

  



Bayes Theorem  

  
Posterior of Hypothesis given Evidence = Likelihood of Hypothesis given a fixed Evidence * 

Prior Hypothesis /  Marginal Evidence 

 

● H stands for any hypothesis whose probability may be affected by data (called evidence 

below). Often there are competing hypotheses, and the task is to determine which is the 

most probable 

● P(H) the prior probability, is the estimate of the probability of the hypothesis H before the 

current evidence is observed. 

● E, the evidence, corresponds to new data that were not used in computing the prior 

probability. 

● P(H | E) = the posterior probability, is the probability of H after E is observed. 

● P(E | H) = The likelihood - the probability of the evidence given the hypothesis. The 

likelihood is a function of the evidence, whereas the posterior is a function of the hypothesis. 

● P(E) is sometimes termed the marginal likelihood or "model evidence". This factor is the 

same for all possible hypotheses being considered (as is evident from the fact that the 

hypothesis H does not appear anywhere in the symbol, unlike for all the other factors) and 

hence does not factor into determining the relative probabilities of different hypotheses. 

 

 

Expectation and other moments 

 

 
 

Var f = < (f-<f>)2 > = <f2> - <f>2 

 

Bernoulli: <f> = 0*(1-𝜉)+ 1*𝜉 = 𝜉 

<f2> = 𝜉 

Therefore, var(f) = 𝜉 - 𝜉2 = 𝜉(1-𝜉) which is maximized at 𝜉=0.5 

 

For f,g independent: <fg> = <f><g> because 

  
When they are dependent this is no longer true. 

 

For two independent f,g: 

 

< f+g > = <f> + <g> 

https://en.wikipedia.org/wiki/Experimental_data
https://en.wikipedia.org/wiki/Marginal_likelihood


var(f+g) = < (f+g)2> - (<f>+<g>)2 = var(f) + var(g) 

var(f-g) = < (f-g)2> - (<f>-<g>)2 = var(f) + var(g)  —- Same as var(f+g) therefore 

 

Coefficient of variation (CV) = Relative standard deviation (RSD) = root(var(f)) / |<f>| 

“Mahalanobis distance” 

Dimensionless 

 

RSD(f+g) / RSD(f-g) =  root(var(f) + var(g)) / |<f>+<g>| * |<f>-<g>| / root(var(f) + var(g)) =  

 

|<f>-<g>|  / |<f>+<g>| < 1 for non-negative random vars!  

 

The difference between two noisy positive variables is a very noisy variable, noisier than their 

sum. Hard to calculate derivatives numerically! 

 

 

The standard error of the mean improves with increasing sample size 

We define the sample mean  

 
** This quantity is itself a random variable, because when we make another batch of 𝑀 

measurements and evaluate it, we won’t get exactly the same answer. 

** How good an estimate of the true expectation is fbar ? 

 

 
The random variables 𝑓𝑖 are all assumed to be independent of one another, so 

 
Therefore, the sample mean becomes a better estimate of the true expectation as we average 

over more measurements. We call the square root of it the “standard error of the mean”.  

 

Bessel’s correction: actually M-1 because when we have M=1 we don’t know how good an 

estimator it is. Mathematically: the sample mean is known therefore only M-1 variables are 

independent. 

 

 

 

 

  



Correlation and covariance  

 

 
 

 
 

 

 

Spearman correlation: rank order, then do Pearson correlation on the rank 

Time correlation: C(j) = cov(f(i), f(i+j)) = 1/M sum_i cov(f(i), f(i+j)) → if > 0 then timeseries is 

correlated. Granger causality.  



Week 3 – Using discrete distributions 
 

• Some entropy and information measures 

• Counting the number of fluorescent molecules in a cell 

• The Luria-Delbrück experiment tested a model for resistance by checking a statistical 

prediction 

• Continuous distributions 

 

 

Some entropy and information measures 

 

Say P(x) = 1/N for xi in i=1…N 

Then S(x) = - sum P ln P = ln N or log2 N 

The “Effective number of species” Or “Hill number 1” is H1 = exp(S) = N. 

 

Renyi entropies: 

 

 
 

With L’Hopital’s rule giving 

 

 
 

 

The Zero’s Renyi entropy is ln sum Pi
0. Therefore exp(R0)—number of different species, 

“species richness”, unweighted. “Maximal entropy” or “Cardinality of the alphabet”. 

 

What’s R2 – The “Collision entropy”. Related to , the Simpson index or (1-) the Gini-Simpson. 

 
 



Similarly  

 
 

 

 
 

Binomial distribution 

 

● Drawing a sample from a reservoir can be modeled via Bernoulli trials. Bernoulli trial - s - 

Succeeds with probability 𝜉. Mean: 𝜉. Variance: 𝜉(1- 𝜉) 

● Suppose that you have 10 𝗆𝖫 of solution containing just four molecules of a particular 

type, each of which is tagged with a fluorescent dye. Mix well and withdraw a 1 𝗆𝖫 

sample (an “aliquot”). How many of those four molecules will be in your sample?  

● Find the probability distribution for the various values for 𝓁, the number of molecules in 

the sample.  

● The sum of several Bernoulli trials follows a Binomial distribution: 

 
● Is normalized according to the sum rule. 

● Independence of variables gives < 𝓁 > = M 𝜉 and var(𝓁) = M 𝜉 (1-𝜉) 

 

 

 



How to count the number of fluorescent molecules in a cell  

 

• Fluorescence intensity, y, is proportional to the number of molecules 𝑀; that is, y = 𝛼𝑀. 

• The problem is that it is hard to estimate accurately the normalization constant, 𝛼, 

needed to convert the observable y into the desired quantity 𝑀. This constant depends 

on how brightly each molecule fluoresces, how much of its light is lost between emission 

and detection, and so on.  

• Rosenfeld and coauthors found a method to measure 𝛼, by using a probabilistic 

argument. 

• Cell division in bacteria splits the cell’s volume into very nearly equal halves.  

• Just prior to division, there are 𝑀0 fluorescent molecules emitting light with total intensity  

• 𝑦0. After division, one daughter cell gets 𝑀1 and the other gets 𝑀2 = 𝑀0 − 𝑀1.  

• M1 is distributed binomially 

 

• Therefore var(M1) = 1/2 (1 – 1/2 )𝑀0  

• Defining the “error of partitioning” ∆𝑀 = 𝑀1 − 𝑀2 then gives ∆𝑀 = 𝑀1 −(𝑀0 −𝑀1)=2𝑀1 

−𝑀0.  

• Var(∆𝑀) = 4 var(M1) = M0 

• Since y = 𝛼𝑀 we have var(∆y) = 𝛼2 var(∆𝑀) = 𝛼2 M0 = 𝛼 y0 , y0 where is the fluorescence 

from the parent cell. Therefore,  

 

 
 

 

 

 



Note: an example of 𝜉 not equal to ½: Asymmetric cell division. Good to make sure that at least on 

good one survives (such as in stem cells). 

 

A generator from scratch, for any discrete distribution 

 

• Suppose that we wish to simulate a variable 𝓁 drawn from Pbinom(𝓁; 𝑀, 𝜉) with 𝑀 = 3.  

• We can do this by partitioning the unit segment into four bins of widths (1 − 𝜉)3,  

3𝜉(1 − 𝜉)2, 3𝜉2(1 − 𝜉), and 𝜉3, corresponding to 𝓁 = 0, 1, 2, and 3 heads, respectively  

• Then we draw uniformly from the line [0,1]. 

 

Poisson Distribution 

 

• The formula for the Binomial distribution, Equation 4.1, is complicated. For example, it 

has two parameters, 𝑀 and 𝜉.  

• Often a simpler, approximate form of this distribution can be used instead with just one 

parameter. 

Say we draw many times, each with low probability, from an infinite reservoire. So, M-

>infinity and we have only one parameter. 

 

With   = 𝜉 M—the number of molecules captured—or otherwise 𝜉 =  / M* 

 

• Substituting, 

 

 
 

 
 

 
 

Giving, 



 
Now,  

 

 
 

Similarly, var(l) =  from using the second derivative. 

 

In short: the Poisson distribution: sum of a lot of Bernoulli trials, each with low probability giving 

a large number of yes-no events. Together, the total “yes” is not small. The total is Poisson 

distributed which we’ll see looks like a Gaussian with its variance equal its mean. 

THE JACKPOT DISTRIBUTION AND BACTERIAL GENETICS  

 

• The key to understanding bacterial resistance 

• Bacteria are killed by virus or AbX 

• Few survive and transmit resistance to the next generation 

• Even a colony made from one non-resistant bacterium will have some resistant 

survivors. How? 

 

 

 
 

Luria-Delbrück Experiment 

 



 
 

• Used Escherichia coli.  

• Each culture was given ample nutrients and allowed to grow for a time 𝑡f , and then was 

challenged with a virus (now called “phage T1”).  

• “Plating” — To count the survivors, Luria and Delbrück spread each culture on a plate 

and continued to let them grow. Each surviving individual founded a colony, which 

eventually grew to a visible size.  

• The survivors were few enough in number that the colonies were well separated, and so  

• could be counted visually.  

• Each culture had a different number 𝑚 of survivors, so the experimenters reported not a 

single number but rather a histogram of the frequencies with which each particular value 

of 𝑚 was observed . 

 

The results were surprising: 

• In some ways, his data looked reasonable—the distribution had a peak near 𝑚 = 0, then 

fell rapidly for increasing 𝑚.  

• But there were also outliers, unexpected data points far from the main group.  

• Worse, when he performed the same experiment a second and third time, the outliers, 

while always present, were quite different in number each time.  

• It was tempting to conclude that this was just a bad, unreproducible experiment! In that 

case, the appropriate next step would have been to work hard to find what was messing 

up the results (contamination?), or perhaps to abandon the whole thing. Instead, Luria 

and Delbrück realized that hypothesis H2 could explain their odd results.  

 

 

• The empirical distribution in the Luria-Delbrück experiment is said to have a long tail; 

that is, the range of values at which it’s nonnegligible extends out to very large 𝑚.  

• The more colorful phrase jackpot distribution is also used, by analogy to a gambling 

machine that generally gives a small payoff (or none), but occasionally gives a large 

one.  

  



Two competing models for the emergence of resistance  

 
 

 
 

 

 
 



Week 4 – Using continuous distributions 
 

• The PDF. Uniform, differential entropy, Gaussian, von-Mises 

• Multivariate Gaussian. Flow cytometry compensation. 

 

• Principal Component Analysis 

• Transformations of a PDF 

Continuous distributions – The probability density function (PDF) 

Look at the range    

 

 

• Note that the bin size is in the denominator! Dimensional. 

• For x<1 you can have P(x)>1.  

• Hard to define bins. Too large: lose resolution. Too small: Add noise.  

• How to bin logarithmic data? 

• Must check any analyses with different bin numbers to see if it changes 

• It’s HARD to estimate a pdf from data. A CDF is easier. Why? 

 

Uniform Distibution: 

 
 

• All outcomes equally likely. “Microcanonical”. 

• How much uncertainty do we have over the outcome? Maximal (if it is bounded). It’s a 

maximum entropy distribution. 

• Differential entropy: 

 

P(x) = 1 for 0 ≤ 𝑥 ≤ 1. So 𝑆 =  −∫ 𝑃 log 𝑃 = 0 

But if 0 ≤ 𝑥 ≤  1
2⁄  then =  − ∫ 2 log 2

1/2

0
= - ln 2 < 0 

More generally, when P(x) = 1/N then S = ln N. 

The differential entropy is dangerous! It depends on the choice of coordinate. 

 



Gaussian distribution 

 

Described by two moments. <x> =  and var(x) = 2. 

 
 

Entropy of a Gaussian is  

 

von-Mises distribution: 

 

Gaussian on a circle. Extends smoothly from Gaussian (small angle limit) to a straight line (k=0). 

 

  
A clock gene, Thaiss,…, Elinav (2016) 
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Flow cytometry compensation 

Brief Introduction to Flow Cytometry 

o A technique used to analyze the physical and chemical characteristics of 

particles in a fluid as it passes through at least one laser. 

o Cells are tagged with fluorescent markers. 

 

 
 

The Need for Fluorescence Compensation 

o Fluorochromes have overlapping emission spectra. 

o Without compensation, a single fluorochrome's emission can be detected in 

multiple detectors, leading to incorrect data interpretation. 

 



 

How Fluorescence Compensation Works 

 

o Adjusting the signal in each detector for the overlap. 

o Essentially, it subtracts a portion of the detected signal in one channel that is 

attributable to another fluorochrome. 

o Can get negative values! 

 

 

 
 

• What if 𝛼 ≪ 1 but so is X0 ? 

• This is a major potential issue of false signal ! 

• X0, Y0, are fluorescence intensity, proportional to the number of antibodies. But the 

proportionality factor can differ widely. 

 

𝑋 = (1 − 𝛼)𝑋0 + 𝛼𝑌0 

𝑌 = (1 − 𝛼)𝑌0 + 𝛼𝑋0  

𝐶𝑜𝑣(𝑋, 𝑌) = 〈(𝑋 − 〈𝑋〉)(𝑌 − 〈𝑌〉)〉 

〈𝑋0𝑌0〉 = 〈𝑋0〉〈𝑌0〉 

𝐶𝑜𝑣(𝑋, 𝑌) = 𝛼(1 − 𝛼)(𝑉𝑎𝑟(𝑋0) + 𝑉𝑎𝑟(𝑌0) 

𝑉𝑎𝑟(𝑋) = (1 − 𝛼)2𝑉𝑎𝑟(𝑋0) + 𝛼2𝑉𝑎𝑟(𝑌0) 

 

We have received the covariance matrix, a major hero of machine learning! 

 

Multivariate Gaussian 

 

  
  



Bivariate / Multivariate Gaussian 

In the two-dimensional case, the covariance matrix: 

 

Entropy:   

 

 

So the inverse covariance matrix gives 

 

 
In the bivariate case the expression for the mutual information is: 

 
So – how to clean up flow cytometry data? If the input signals are Gaussian: (i) calculate the 

covariance matrix (ii) diagonalize it (iii) its eigenvectors are the “whitening” matrix to de-noise. 

 

 
 

  



Principal Component Analysis (PCA) 

Let the multivariate Gaussian 

𝑃𝑟𝑜𝑏(𝑿) ∝ 𝑒−
1
2𝑿𝑇Σ̂−1𝑿

 
Let the covariance matrix 

Σ̂ = 𝑐𝑜𝑣(𝑿) 

Σ̂ = �̂�Σ̃̂�̂�−1 

𝒀 = �̂�−1𝑿 

Then, 

𝑒−
1
2𝑿𝑇Σ̂−1𝑿 = 𝑒−

1
2𝑿𝑇(�̂�Σ̃̂�̂�

−1
)

−1
𝑿 = 𝑒−

1
2𝑿𝑇𝑃(Σ̃̂)

−1
�̂�

−1
𝑿 = 𝑒−

1
2𝒀𝑻(Σ̃̂)

−1
𝒀 = ∏ 𝑒

−
𝑦𝑖

2

2𝜎𝑖
2

𝑁

𝑖=1

 

 
Vectors can be ranked by eigenvalue, keep only the largest eigenvalues to reduce dimension. 

 

      
[From Stephens, Jonson-Kerner, Bialek, Ryu (2008) ] 

  



Transformations of a PDF (Erez et al. 2018) 

Say, I measure flow cytometry data, it’s over orders of magnitude! Makes sense to model as a 

log-normal distribution. 

 

    
 

 
 

 
 

• It appears everywhere in biology: protein counts, gene expression, tissue size, particle 

size distribution 

Why? Perhaps because 

 

 
 

How to transform variables in a probability distribution? 

   
 

(In fact the derivative is with an absolute value if you think about the other direction) 

 

P(log x) = P(x) / (dlogx/dx) = x P(x)   



As a result, you can have two peaks in P(log I) but only one peak in Q(I) ! 

 

 
 

To simulate a specific PDF, Px 

 

If Y = G(x) = ln(x) then dG/dx = 1/x and Py = Px * x 

If Py is uniform, the Px = | dG/dx | 

 

 
 

 
 



Week 5 – Model Selection and 

Parameter Estimation 
 

• Viewpoints 

• Parameter Estimation. Maximum Likelihood. 

• Localization microscopy 

• Curvature of the likelihood function 

Introduction 

 

- model predicts not only the average value of some experimental observable taken over 

many trials, but its full pdf.  

- We can just compare graphs of the predicted versus experimental distributions. Can’t we 

find a more objective way to evaluate a model?  

- Each model is really a family of models, depending on a parameter. How do we find the 

“right” value of the parameter?  

- Suppose that one value of the parameter makes a prediction that’s better on one region 

of the data, while another value succeeds best on a different region. Which value is 

better overall?  

- This chapter will build on our earlier discussion of the Bayes formula to answer 

questions like these using the notion of likelihood. 

- Biological question: Light microscopes blur everything smaller than about two hundred 

nanometers; how, then, can we see individual molecular motor steps? 

Physical idea: The location of a single spot can be measured to great accuracy, if we 

collect enough photons.  

 

 



 

 

Probability: we may know that a deck of cards contains 52 cards with particular markings, and 
model a good shuffle as one that disorganizes the cards, leaving no discernible relevant 
structure. Then we can ask about certain specified outcomes. 

Statistics or statistical inference: We have already measured an outcome (or many), but we 
don’t know the underlying mechanism that generated it. Reasoning backward from the data to 
the mechanism. 

Viewpoints 

 

Viewpoint 1: unknown parameter 𝛼. Given experimental data, and now I want to choose 

between the models, or between different parameter values in one family. So I want to find 
P(𝗆𝗈𝖽𝖾𝗅𝛼 ∣ 𝖽𝖺𝗍𝖺) and find the model or parameter value that maximizes this quantity. 

 

Viewpoint 2: But the “probability of a model” is meaningless, because it doesn’t correspond to 
any replicable experiment. The mutation probability 𝛼 of a particular strain of bacteria under 

particular conditions is a definite number. We don’t have a large collection of universes, each 
with a different value of 𝛼. We have one Universe. 

What’s meaningful is P(𝖽𝖺𝗍𝖺 ∣ 𝗆𝗈𝖽𝖾𝗅𝛼 ). It answers the question, “If we momentarily assume that 
we know the true model, then how likely is it that the data we did observe would have been 
observed?” If it’s unacceptably low, then we should reject the model. If we can reject all but one 
reasonable model, then that one has the best chance of being right.  

Viewpoint 1: When you said “reject all but one model,” you can always construct a highly 
contrived model that predicts exactly those data, and so will always win, despite having no foun- 
dation! Presumably you’d say that the contrived model is not “reasonable,” but how do you 
make that precise? I’m sorry, but I really do want P(𝗆𝗈𝖽𝖾𝗅𝛼 ∣ 𝖽𝖺𝗍𝖺), which is different from the 

quantity that you proposed.  

 

 

 

 

  



In real life, we do not know a priori the probabilities of hypotheses, nor even the sample space 
of all possible outcomes. Nevertheless, each of us constantly estimates our degree of belief in 
various propositions, assigning each one a value near 0 if we are sure it’s false, near 1 if we are 
sure that it’s true, and otherwise something in between.  

We also constantly update our degree of belief in every important proposition as new 
information arrives. Can we systematize this process?  

The Bayes formula gives a consistent approach to updating our degree of belief in the light of 
new data  

We consider each possible model as a proposition. We wish to quantify our degree of belief in 
each proposition, given some data.  

If we start with an initial estimate for ℘(𝗆𝗈𝖽𝖾𝗅𝛼), then obtain some relevant experimental data, 
we can update the initial probability estimate by using the Bayes formula, which in this case 
says  

 

But science is supposed to be objective! It’s unacceptable that your formula should depend on 
your initial estimate of the probability that 𝗆𝗈𝖽𝖾𝗅 is true. Why should I care about your subjective 

estimates?  

Without declaring P(model) one assumes a particular prior distribution, namely, the uniform 
prior, or P(𝗆𝗈𝖽𝖾𝗅𝛼 ) = constant. This sounds nice and unbiased, but really it isn’t: If we re-
express the model in terms of a different parameter (for example, 𝛽 = 1∕𝛼), then the probability 

density function for 𝛼 must transform. In terms of the new parameter 𝛽, it generally will no longer 

appear uniform!  

A pragmatic approach to likelihood  

- We use our knowledge of the world to put together one or more physical models and attribute 
some prior belief to each of them. This is the step that Nora calls restricting to “reasonable” 
models; it seeks to eliminate the “contrived” models that Nick worries about. 

- Instead of attempting an absolute statement that any model is “confirmed,” we can limit our 
ambition to comparing the posterior probabilities of the set of models selected in the first step. 
Because they all share the common factor 1∕P(𝖽𝖺𝗍𝖺) (see Equation 7.1), we needn’t evaluate 

that factor when deciding which model is the most probable. All we need for comparison are the 
posterior ratios for all the models under consideration, that is,  

 

 



 - If the likelihood function P(𝖽𝖺𝗍𝖺 ∣ 𝗆𝗈𝖽𝖾𝗅) strongly favors one model, or is very sharply peaked 
near one value of a model’s parameter(s), then our choice of prior doesn’t matter much when 
we compare posterior probabilities. 

- Often it suffices to compute likelihood ratios when choosing between models. This procedure 

is aptly named maximum likelihood estimation, or “the MLE approach.” Using an explicit prior 

function, when one is available, is called “Bayesian inference.”  

 

Parameter Estimation – Maximum likelihood 

• Suppose that a strain of laboratory animal is susceptible to a particular cancer: 17% of 
individuals develop the disease. Now, a test group of 25 animals is given a suspected 
carcinogen, and six of them develop the disease. The quantity 6/25 is larger than 0.17—
but is this a significant difference?  

• the best we can do is to suppose that each individual is an independent Bernoulli trial 

and the environment can be summarized by a single number 𝜉, the probability to get the 

disease. We wish to assess the hypothesis that the experimental group can be regarded 

as being drawn from a distribution with the same value of 𝜉 as the control group. 

• We will evaluate P(𝗆𝗈𝖽𝖾𝗅𝛼 ∣ 𝖽𝖺𝗍𝖺), a probability distribution in 𝛼, and ask what range of 𝛼 

values contains most of the posterior probability.  

 

We’ve got a model for this random system (it’s a Bernoulli trial), but the model has an 

unknown parameter (the fairness parameter 𝜉), and we’d like to know whether 𝜉 = 1∕2. We’ll 

consider three situations:  

a. We observed 𝓁 = 6 heads out of 𝑀 = 10 flips. 

b. We observed 𝓁 = 60 heads out of 𝑀 = 100 flips.  

c. We observed 𝓁 = 600 heads out of 𝑀 = 1000 flips.  

 

Intuitively, in situation a we could not make much of a case that the coin is unfair: Fair coins 

often do give this outcome. But we suspect that in the second and third cases we could 

make a much stronger claim that we are observing a Bernoulli trial with 𝜉 ≠ 1∕2.  

 

The maximally likely value for a model parameter can be computed on the basis of a finite 

dataset  

• If we have no other prior knowledge of 𝜉, then we use the Uniform distribution on the 

allowed range from 𝜉 = 0 to 1 as our prior.  

• Before we do our experiment (that is, make 𝑀 flips), both 𝜉 and the actual number 𝓁 of 

heads are unknown. After the experiment, we have some 𝖽𝖺𝗍𝖺, in this case the observed 

value of 𝓁. Because 𝓁 and 𝜉 are not independent, we can learn something about 𝜉 from 

the observed 𝓁. To realize this program, we compute the posterior distribution and 

maximize it over 𝜉, obtaining our best estimate of the parameter from the data.  



• When we do the maximization, we hold the observed data fixed. The experimental data 

(𝓁) are frozen there in our lab notebook while we entertain various hypotheses about the 

value of 𝜉. So the factor P(𝓁), which depends only on 𝓁, is a constant for our purposes; it 

doesn’t affect the maximization. We are assuming a Uniform prior, so P(𝗆𝗈𝖽𝖾𝗅𝜉) also 

doesn’t depend on 𝜉, and hence does not affect the maximization problem. P(𝗆𝗈𝖽𝖾𝗅𝜉 ∣ 𝓁) 

= 𝐴P(𝓁 ∣ 𝗆𝗈𝖽𝖾𝗅𝜉 ).  

 
 

 
 

We wish to maximize P(𝗆𝗈𝖽𝖾𝗅𝜉 ∣ 𝓁), holding 𝓁 fixed, to find our best estimate for 𝜉.  

Equivalently, we can maximize the logarithm:  

 
 

• The maximum is at 𝜉∗ = 𝓁∕𝑀  

• if a person we trust tells us that the coin is fair, then we use a prior with a maximum near 

𝜉 = 1∕2; our best estimate of 𝜉 then accounts for both the prior and the experimental data.  

 

 

The credible interval expresses a range of parameter values consistent with the available data  

 

• What’s the error bar on 𝜉? How sharply is it peaked? Can it be a fair coin? 

 

• The posterior distribution ℘(𝗆𝗈𝖽𝖾𝗅𝜉 ∣ 𝓁) is a probability density function for 𝜉. So we can 

find the prefactor 𝐴′ in Equation 7.5 by requiring that ∫01 d𝜉 ℘(𝗆𝗈𝖽𝖾𝗅𝜉 ∣ 𝓁) = 1. The 

integral is not hard to compute. 

 

  



 

 

 

Localization Microscopy 

FIONA - Fluorescence imaging at one nanometer accuracy  

We’ve discussed the use of flourescent dyes and filters to pick up only the emission wavelength. 
But then we have Abbe diffraction: 

 

S for NA = 1.4-1.6 and light in 500nm we have d > 250nm. Which is small compared to most 
biological cells (1 μm to 100 μm), but large compared to viruses (100 nm), proteins (10 nm) and 
less complex molecules (1 nm).  

Unfortunately, a subwavelength object, such as an individual macromolecule, appears as a blur, 
indistinguishable from an object a few hundred nanometers in diameter.  

To break through this impasse, first note that for some problems, we do not need to form a full 
image. For example, molecular motors are devices that convert “food” (molecules of ATP) into 
mechanical steps. In order to learn about the stepping mechanism in a particular class of 
motors, it’s enough to label an individual motor with a fluorophore. For that problem, we don’t 
really need to resolve two nearby points. Instead, we have one point source of light (a 
fluorophore attached to the motor), and we wish to determine its position accurately enough to 
detect and measure individual steps.  

Although the pixels fire at random, they have a definite probability distribution, called the point 
spread function of the microscope (Figure 7.3b). If we deliberately move the sample by a tiny, 
known amount, the smeared image changes only by a corresponding shift. So we need to 
measure the point spread function only once; thereafter, we can think of the true location of the 
fluorophore, (𝜇x,𝜇y), as a pair of parameters describing a family of hypotheses. Each hypothesis 

is described by a known likelihood function—the shifted point spread function. Maximizing the 
likelihood over the parameters then tells what we want to know: Where is the source?  



 

 

 

Therefore 
𝑑 ln𝑃

𝑑𝜇
= 0 =  ∑

𝑥𝑖−𝜇
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𝑀
∑ 𝑥𝑖𝑖 . Perhaps not surprising. But how 

good is this estimate? Rearranging Equation 7.6 gives the log likelihood as  

 

The constant in the second expression includes the term with the sum of 𝑥2. This term does not 

depend on 𝜇 , so it is “constant” for the purpose of optimizing over that desired quantity.  



Exponentiating the third form of Equation 7.7 now shows that the full posterior PDF is in fact a 
Gaussian. Its variance equals 𝜎2∕𝑀, agreeing with our earlier result.  

Also, from Eq. 7.6,  
𝑑 ln 𝑃

𝑑 𝜎2
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(𝑥𝑖−𝜇)
2

(2 𝜎4
𝑀
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𝑀

2𝜎2
= 0 → 𝜎2 = 

1

𝑀
∑ (𝑥𝑖 − 𝜇)2𝑀
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Yildiz and coauthors applied this method to the successive positions of the molecular motor 
myosin-V, obtaining traces like those in Figure 7.3c. Each such “staircase” plot describes the 
progress of a single motor molecule. The figure shows the motion of a motor that took a long 
series of rapid steps, of length always near to 74 𝗇𝗆. Between steps, the motor paused for 

various waiting times. Chapter 9 will study those waiting times in greater detail.  

Complete images: PALM/FPALM/STORM  

• More generally, we’d like to get an image, that is, a representation of the positions of 
many objects. For example, we may wish to see the various architectural elements in a 
cell and their spatial relationships.  

• We mark the objects of interest with many fluorophores (in this context called “tags”) and 

model the light distribution as the sum of multiple point spread functions, each centered 

on a different unknown location  

• In the mid-1990s, E. Betzig outlined a fruitful approach: to arrange that each emitter  

be somehow different from its neighbors.  

• R Dickson found that GFP has a long-lived “dark” conformation that does not fluoresce. 
Unexpectedly, they found that they could pop individual molecules from this dark state to 
a fully fluorescent state by activation with light of wavelength 405 𝗇𝗆.  

• Can turn on individual molecules in a time-resolved way. (See images from book). 

Curvature of the likelihood function 

Model fitting 

Suppose that we make trials at each of several typical 𝑥 values and find that, for each fixed 𝑥, 
the observed 𝑦 values have a Gaussian distribution about some expectation 𝑦 (𝑥). Suppose 

further that the variances of each of these distributions are all the same constant value 𝜎2 

independent of 𝑥, as in Figure 7.6b. If we have reason to believe that 𝑦 (𝑥) depends on 𝑥 via a 
linear function, that is, 𝑦 (𝑥) = 𝐴𝑥 + 𝐵, then we’d like to know the values of 𝐴 and 𝐵 that are best 

supported by the data.  

 



 

To find the optimal fit, we maximize this quantity over 𝐴 and 𝐵 holding the 𝑥𝑖 and 𝑦𝑖 fixed. We 

can neglect the first term in square brackets, because it doesn’t depend on 𝐴 or 𝐵. In the 
second term, we can also factor out the overall constant (2𝜎2)−1. Finally, we can drop the 

overall minus sign and seek the minimum of the remaining expression:  

 

Because we have assumed that every value of 𝑥 gives 𝑦 values with the same variance, we can even drop the 
denominator when minimizing this expression.  

Idea 7.8 suggests a more general procedure called least-squares fitting. Even if we have a 
physical model for the experiment that predicts a nonlinear relation 𝑦(𝑥) = 𝐹(𝑥), we can still use 

it, simply by substituting 𝐹(𝑥) in place of 𝐴𝑥 + 𝐵 in the formula.  

• We assumed that, for fixed 𝑥, the variable 𝑦 was Gaussian distributed. Many experi- 

mental quantities are not distributed in this way.  

• We assumed that var 𝑦(𝑥) = 𝜎2 was independent of 𝑥. Often this is not the case. 

 

If we assume different variance for different points, then 
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Using Cramers-Rao: 
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If all sigmas are the same we have 𝜎𝜇
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Cramér–Rao bound 

 

→ The Fisher information is the curvature of the log-likelihood function 

 



Week 6 – Poisson Processes and Their 
Simulation 
 

• How does the molecular motor of the myosin-V  

THE KINETICS OF A SINGLE-MOLECULE MACHINE  

 

(b) The myosin-V molecule has two “legs,” which join its “feet” to their common “hip,” allowing it 
to span the 36 𝗇𝗆 separation between two binding sites (light blue) on an actin filament (blue). 
[Art by David S Goodsell.]  

Two “feet” walk on a “track” e.g. actin or tubulin. The feet are subunits recognizing binding sites 
regularly spaced on the track. ATP à ADP energy is used to disconnect the foot and jump to 
the next site (ratchet). In a large muscle there are about 1019 myosin molecules pulling together. 
(For comparison: 1011 galaxies, the milky way has about that number of stars). 1 ATP produces 
about 6nN of force. 

• Figure 7.3c: Chapter 7 introduced myosin-V and described how Yildiz et al. visualized its 
individual steps. As shown in, the motor’s position as a function of time looks like a 
staircase.  
 

• The figure shows an example with rapid rises of nearly uniform height, corresponding to 
74 𝗇𝗆 steps. But the widths of the stairs in that figure, corresponding to the waiting times 
between steps, are quite nonuniform.  

• The motor’s progress consists of sudden steps, spread out between widely variable 
pauses. And yet, the overall trend of the trace in Figure 7.3c does seem to be a straight 
line of definite slope. We need to make this intuition more precise.  

• Each step requires that the motor bind an ATP molecule. ATPs are available, but they 
are greatly outnumbered by other molecules, such as water.  

• So the motor’s ATP-binding domain is bombarded by molecular collisions at a very high 
rate, but almost all collisions are not “productive”; that is, they don’t lead to a step. Even 
when an ATP does arrive, it may fail to bind, and instead simply wander away.  

• We also assume that after a productive collision, the internal state resets; the motor has 
no memory of having just taken a step.  

• The output of each trial is not a single number but is an entire time series of steps (the 
staircase plot).  



• Each step advances the molecule by about the same distance; thus, to describe any 
particular trial, we need only state the list of times {𝑡1 , 𝑡2 , ... , 𝑡𝑁 } when steps occurred.  

• A random system with this sort of sample space is called a random process.  
• Because the motor is assumed to have no memory of its past, we fully specify the 

process when we state the collision interval ∆𝑡 and productive-step probability 𝜉.  
• This Markov property greatly simplifies the analysis. 
• We	are	considering	a	physical	model	of	molecular	stepping	that	idealizes	each	collision	 

as	independent	of	the	others,	and	also	supposes	them	to	be	simple	Bernoulli	trialss	

	

Let	𝖤∗	denote	the	event	that	a	step	happened	at	time	slot	𝑖.	Then	to	characterize	the	discrete-time	stepping	
process,	we	can	find	the	probability	that,	given	𝖤∗,	the	next	step	takes	place	at	a	particular	time	slot	𝑖	+	𝑗,	for	
various	positive	integers	𝑗.	Call	this	proposition	“event	𝖤𝑗.”	We	seek	the	conditional	probability	P(𝖤𝑗	∣	𝖤∗).	 

• More	explicitly,	P(𝖤∗)	is	the	probability	that	a	step	occurred	at	slot	𝑖,	regardless	of	what	happened	on	
other	slots.	 

• To	find	the	conditional	probability	P(𝖤𝑗	∣	𝖤∗)	=	P(𝖤𝑗	and	𝖤∗)	∕	P(𝖤∗)	 
• In	an	interval	of	duration	𝑇,	there	are	𝑁	=	𝑇∕∆𝑡	time	slots.	Each	outcome	of	the	random	process	is	a	

string	of	𝑁	Bernoulli	trials	(step/no-step	in	time	slot	1,	...	,	𝑁).	𝖤∗	is	the	subset	of	all	possible	outcomes	
for	which	there	was	a	step	at	time	slot	𝑖.	Because	they	are	independent	they	can	be	“integrated	out”	
then	P(𝖤∗)	=	𝜉. 

• Similarly, P(𝖤𝑗	and	𝖤∗)	=	𝜉(1	−	𝜉)𝑗−1𝜉	 
• Therefore,	P(𝖤𝑗	∣	𝖤∗)	=	𝜉(1	−	𝜉)𝑗−1	=	Pgeom(𝑗;𝜉),	for	𝑗	=	1,2,	....	 
• Thus, like the Binomial, Poisson, and Gaussian distributions, the Geometric distribution  

also has its roots in the Bernoulli trial.  

A POISSON PROCESS CAN BE DEFINED AS A CONTINUOUS-TIME 
LIMIT OF REPEATED BERNOULLI TRIALS 

• Often it’s not appropriate to treat time as discrete. For example, as far as motor stepping 
is concerned, nothing interesting is happening on the molecular collision time scale ∆𝑡.  

• We consider a limit, ∆𝑡 → 0. If such a limit makes sense, then our formulas will have one 
fewer parameter (the irrelevant ∆𝑡 will disappear) . 

• We now show that the limit does make sense, and gives rise to a one-parameter family 
of continuous-time random processes called Poisson processes.  

• Poisson processes arise in many contexts, so from now on we will use the word “blip” 
referring to a sudden event.  

• The total number of time slots in a fixed interval 𝑇 is 𝑇⁄(∆𝑡), which approaches infinity as 
∆𝑡 → 0. If we were to hold 𝜉 fixed, then the total number of blips expected in the interval 
𝑇, that is, 𝜉𝑇⁄∆𝑡, would also become infinite. To get a reasonable limit, then, we must 
imagine a series of models in which 𝜉 is also assumed to be small. 

• 𝜉 = 𝛽∆𝑡, independent of what is happening in any other interval, and we take the 
continuous-time limit ∆𝑡 → 0 holding 𝛽 fixed.  



• The constant 𝛽 is called the mean rate (or simply “rate”) of the Poisson process; it has 
dimensions 1⁄𝕋. The components 𝜉	and	∆𝑡	are	irrelevant. 

 
Example: Taking ∆𝑡 = 1 𝜇𝗌, you conclude that the is satisfied with 𝛽 = 5⁄𝗌. But your friend takes 
∆𝑡 = 2 𝜇𝗌. Will you agree? 
Answer: The probability for an event in my time window is tiny, so even at a double window the 
probability for two events is small enough to be neglected, leading to the same statistics. 

 
Poisson process vs. Poisson distribution: Each draw from the Poisson distribution is a single 
integer; each draw from the Poisson process is a sequence of real numbers {𝑡𝛼}. However, 
there is a connection. The distribution of counts of a Poisson process is a Poisson distribution. 

 
 
Waiting times are Exponentially distributed:   
 

• The interval  between successiveblips  iscalled the waiting time, 𝑡w  
• The	PDF	of	the	waiting	time	is	the	discrete	distribution	divided	by	∆𝑡:	 

 
	
In this formula, 𝑡w = (∆𝑡)𝑗 and 𝜉 = (∆𝑡)𝛽, with 𝑡w and 𝛽 held fixed as ∆𝑡 → 0. To simplify 
Equation 9.4, note that 1⁄𝜉 ≫ 1 because ∆𝑡 approaches zero.  

 

 
 



The mean waiting time,	⟨𝑡!⟩	follows,	
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We	can	use	the	waiting	time	distribution	to	fit	experimental	data!	

Counts are Poisson distributed:   

 

How many blips will we observe in a fixed, finite time interval 𝑇?  

To approach the question, we again begin with the discrete-time process, regarding the interval 
𝑇 as a succession of 𝑀 = 𝑇⁄∆𝑡 time slots. The total number of blips, ℓ, equals the sum of 𝑀 
Bernoulli trials. For a Poisson process with mean rate 𝛽, the probability of getting ℓ blips in any 
time interval 𝑇 is Ppois(ℓ; 𝛽𝑇).  

With <	ℓ > =   𝛽𝑇	

This	can	explain	why	the	staircase	plot	has	a	mean	slope	despite	the	random	waiting	times.	

Thinning a Poisson process results in another Poisson process  

Suppose that we have a Poisson process with mean rate 𝛽. We now create another random 
process. Each time we draw a blip sequence from the original process, we accept or reject 
individual blips based on independent Bernoulli trials with probability 𝜉thin, reporting only the 



times of the accepted blips. The thinning property states that the new process is also Poisson, 
but with mean rate reduced from 𝛽 to 𝜉thin𝛽.  

To prove this result, again, divide time into slots ∆𝑡 so small that there is negligible probability to 
get two or more blips in a slot  

 

A regularly spaced timeseries like this would not remain regularly spaced, but a Poisson 
process would remain a Poisson process. 

Merging two Poisson processes also results in another Poisson process  

Suppose that we have two independent Poisson processes, generating distinct types of blips 
with mean rate 𝛽1 and 𝛽2. We can define a “merged process” that reports the arrival times of 
either kind of ball. The merging property states that the merged process is itself Poisson, with 
mean rate 𝛽tot = 𝛽1 + 𝛽2.  

To prove it, again divide time into small slots ∆𝑡. Then (𝛽1∆𝑡)+(𝛽2∆𝑡) = 𝛽tot∆𝑡  

(From P(E1 and E2) = P(E1) + P(E2) for exclusive events). 

Probability the blip is type 1: 𝛽1 / 𝛽tot 

 

Some biological contexts 

•  Section 9.2 imagined the stepping of myosin-V as a result of two sequential events: 
First an ATP molecule must encounter the motor’s ATP-binding site, but then it must 
also bind and initiate stepping. It’s reasonable to model the first event as a Poisson 
process, because most of the molecules surrounding the motor are not ATP and so 
cannot generate a step. It’s reasonable to model the second event as a Bernoulli trial, 
because even when an ATP does encounter the motor, it must overcome an activation 
barrier to bind; thus, some fraction of the encounters will be nonproductive. The thinning 
property leads us to expect that the complete stepping process will itself be Poisson, but 



with a mean rate lower than the ATP collision rate. We’ll see in a following section that 
this expectation is correct.  

• Photons (particles of light) arrive at your eye in a Poisson process, but many are 
randomly “lost” by being scattered or by being absorbed by things other than your 
photoreceptors. Nevertheless, photon absorptions by photoreceptors follow a Poisson 
process, by the thinning property. This fact lets us apply simple models to visual 
reception.  

• Suppose that two or more identical enzyme molecules exist in a cell, each continually 
colliding with other molecules, a few of which are substrates for a reaction that the 
enzymes catalyze. Each enzyme then emits product molecules in a Poisson process, 
just as in the motor example. The merging property leads us to expect that the combined 
production will also be a Poisson process.  

MULTISTEP PROCESSES AND CONVOLUTION 

Myosin-V is a processive molecular motor whose stepping times display a dual character  

• Two feet rarely detach together, letting it take many steps. 
• The graph shows each step advancing the motor by sudden jumps of roughly 74 𝗇𝗆. 

Interestingly, however, only about one quarter of the individual myosin-V molecules 
studied had this character.  

• The others alternated between short and long steps; the sum of the long and short step 
lengths was about 74 𝗇𝗆. This division at first seemed mysterious—were there two 
distinct kinds of myosin-V molecules? Was the foot-over-foot mechanism wrong?  

• A. Yildiz and coauthors proposed a simpler hypothesis to interpret their data:  
All the myosin-V molecules are in fact stepping in the same way along their actin 
tracks. In this experiment, the anomalous subpopulation differed only in where on the 
myosin-V molecule the fluorescent marker was attached.  

Poisson process, with mean rate 𝛽 depending on the concentration of ATP.  
Hence, the PDF of interstep waiting times should be an Exponential distribution.  
In fact, the subpopulation of myosin-V motors with alternating step lengths really did obey this 
prediction (see Figure 9.10a), as do the kinetics of many other chemical reactions. But for the 
other subpopulation (the motors that took 74 𝗇𝗆 steps), the prediction failed badly (Figure 
9.10b). 
 



 

In the subpopulation of 74 𝗇𝗆 steppers, the first, third, fifth, . . . steps are not visible. Therefore, 
what appears to be the 𝛼th interstep waiting time, 𝑡′ , is actually the sum of two consecutive 
waiting times: 
𝑡w′,𝛼 = 𝑡w,2𝛼 + 𝑡w,2𝛼−1.  

Even if the true waiting times are Exponentially distributed, we will still find that the apparent 
waiting times 𝑡′ have a different distribution: the convolution. Thus,  

 

 

 

In fact, fitting the histogram in Figure 9.10a leads to a value for the mean rate 𝛽, and hence to a 
definite prediction (no further free parameters) for the histogram in Figure 9.10b.  

 

Note that in general, the Gamma distribution 



 

Here with alpha=2 for a two-step process. 

Relative standard deviation can be used to reveal substeps in a kinetic scheme  

Note that E[tw] = 2/	𝛽	and	Var[tw]	=	2/	𝛽2.	So	root(var)/mean	=	1/root(2)	

But	for	an	exponential	distribution	root(var)/mean	=	1.	

This	is	a	statistical	test	of	the	number	of	steps	the	motor	takes	without	finding	beta,	just	by	
computing	the	mean	and	variance.	

	

Simulating simple Poisson processes 

• We can avoid stepping through the vast majority of time slots in which nothing happens. 
We just generate a series of Exponentially distributed intervals 𝑡w,1, ..., then define the 
time of blip 𝛼 to be 𝑡𝛼 = 𝑡w,1 + ⋯ + 𝑡w,𝛼, the accumulated waiting time.  

• A computer’s basic random-number function has a Uniform, not an Exponential,  
distribution. However, we can convert its output to get what we need, by adapting the  
Example on page 113. This time the transformation function is 𝐺(𝑡w ) = e−𝛽𝑡w , whose 
inverse gives 𝑡w = −𝛽−1 ln 𝑦.  

• Suppose that we wish to simulate a process consisting of two types of blip. Each type 
arrives independently of the other, in Poisson processes with mean rates 𝛽a and 𝛽b, 
respectively. We could simulate each series separately and merge the lists, sorting them 
into a single ascending sequence of blip times accompanied by their types (a or b). 

• There is another approach, however, that runs faster and admits a crucial generalization 
that we will need in Chapter 10. We wish to generate a single list {(𝑡𝛼 , 𝑠𝛼 )}, where 𝑡𝛼 are 
the event times (continuous), and 𝑠𝛼 are the corresponding event types (discrete).  
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