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� Abstract
Recent efforts in systems immunology lead researchers to build quantitative models of
cell activation and differentiation. One goal is to account for the distributions of pro-
teins from single-cell measurements by flow cytometry or mass cytometry as readout of
biological regulation. In that context, large cell-to-cell variability is often observed in
biological quantities. We show here that these readouts, viewed in logarithmic scale
may result in two easily-distinguishable modes, while the underlying distribution (in
linear scale) is unimodal. We introduce a simple mathematical test to highlight this
mismatch. We then dissect the flow of influence of cell-to-cell variability proposing a
graphical model which motivates higher-dimensional analysis of the data. Finally we
show how acquiring additional biological information can be used to reduce uncer-
tainty introduced by cell-to-cell variability, helping to clarify whether the data is uni-
or bimodal. This communication has cautionary implications for manual and auto-
matic gating strategies, as well as clustering and modeling of single-cell meas-
urements. VC 2018 International Society for Advancement of Cytometry
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FLOW cytometry (FCM) data typically stretches across several orders of magnitude,

with fluorescence intensity I readily spanning values between 102 and 105. Although

individual cells (events) are recorded as fluorescence intensity I, typically what is dis-

played to the investigator is a binned or smoothed histogram which represents an

empirical probability density function (pdf) of the data. Due to the wide span of the

data, binning directly the intensity I is noisy since there is no single scale one can

apply. Instead, when binning FCM data to create a histogram representing a pdf, it is

natural to let bin sizes increase as a geometric progression, namely, to evenly bin the

logarithm of the fluorescence intensity. As a result, instead of the probability Q(I)

(pdf) of fluorescence intensity I, one usually analyzes the probability (pdf) of log I ,

which we denote Pðlog IÞ. Indeed, Pðlog IÞ has many advantages: easy display of

many orders of magnitude in I, easy to model as a two-component log-normal mix-

ture model (as in (1)), and easy to intuitively understand the effect of changing the

voltage gain on the flow-cytometer detector photo-multiplier. While such data pre-

sentation has been widely adopted in the field of cytometry out of these practical rea-

sons, a rigorous assessment of this log-transformation reveals unwarranted features.

Simply plotting Q(I) versus I is impractical as most of the data inevitably

appears crowded against the I 5 0 axis. Thus, it is common practice to plot Pðlog IÞ
or variants thereof which deal with small and negative I values introduced by fluores-

cence compensation (e.g., “Logicle” (2), “VLog” (3), and other transformations (4)).

Displaying faithfully FCM data is not easy, as the logarithmic scale and fluorescence

compensation introduce problems that are easy to miss (5) leading to uncertainty in
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the number of distinct populations present in the data. Previ-

ously, attention has been given to the possibility of effects pro-

duced by logarithmic binning (6), contrasting the difference

between plotting logarithmic histograms Pðlog IÞ versus log I

as opposed to rescaling the x-axis by plotting Q(I) versus

log I . However, an additional, potentially confusing situation

seems to have been overlooked: the possible appearance of a

second mode in Pðlog IÞ, rendering Pðlog IÞ bimodal, while

for the same data only one mode exists in Q(I). This is the

focus of this work.

When considering biological measurements, I is propor-

tional to the actual copy number of RNA or proteins. When

theoretical considerations are applied to biological systems

(such as biochemical dynamics (7–12), mass-action chemical

equilibria, cell-cycle measurements (13), and Hill dose-

response curves (14)), it is the copy number itself that is

under consideration. Despite that, the logarithm of copy

number is an appealing quantity because of its approximately

Gaussian statistics, yielding insight into details easily lost if

the data were to be analyzed only in linear scale. This leads to

a mismatch, where for instance models posed in linear space

and data plotted in logarithmic space seem unable to be rec-

onciled without invoking additional effects such as stochastic

gene expression noise (7) and cell-to-cell variability (15–17).

Even so, typically one must resort to approximations to ana-

lyze noise propagation linearly (8).

The difference between the convenient consideration of

the logarithm of abundances and the theoretically-accurate

analysis of the linear copy number renders the question of

whether Q(I) has one or two modes (3 extrema) relevant in

the following ways: (1) the existence of 1 or 3 extrema is often

used to infer the fixed points of a dynamic stochastic bio-

chemical network (1,7,9) and other in silico methods (18); (2)

extrema are used to define cell-types in automatic (density

based) gating and clustering algorithms (19–24); (3) the exis-

tence of a clearly bimodal distribution is used for manual gat-

ing (e.g., discerning between activated and un-activated cells)

in a way that may appear more robust and compelling than it

might truly be. Yet, immunologists have relied on FCM for

over forty years to identify new cell populations, often based

on manual gating of FCM data. In particular, in cell popula-

tion enrichment experiments, often such markers are chosen

that the (positive) signal is sufficiently well separated from the

(negative) background for the two (logarithmic, linear) repre-

sentations to have no mismatch in their number of peaks. At

some level, these experiments succeed in gating the FCM data

because typically only these high signal-to-noise markers are

used, based on prior knowledge. However, not all FCM

experiments enjoy such favorable conditions. Moreover, as the

field advances, and more and more markers are acquired,

some of these will inevitably have lower signal to noise resolu-

tion. The purpose of this manuscript is not to claim that all

logarithmic gates are problematic. Instead, we caution here of

a situation where peaks that appear sufficiently separated in

logarithmic space may yet mislead. We propose a simple test

to warn if for a given sample, this situation arises.

The rest of this article is composed of two parts. In the

first part, we point out and analyze the situation where a mis-

match between the two representations can happen: we for-

mally state the problem using theoretical modeling of FCM

data as a mixture of two log-normal distributions (colloqui-

ally the “negative” and “positive” modes), explicitly show sit-

uations where two modes appear in Pðlog IÞ while only one

mode exists in Q(I), and demonstrate this confounding effect

on experimental data. In the second part, we analyze the role

of cell-to-cell variability in experimental data and show how

by measuring a suitable extra dimension one can factor out

some of this variability, thus reducing the broadness of the

modes sufficiently so as to reduce the mismatch between the

two representations. Thus we provide a prescription to design

experiments and analyze them so as to resolve the unimodal

versus bimodal discrepancy.

METHODS

In this section we present, in two detailed sections, the

theoretical and experiment techniques used in our study.

Theory

Given the pdf Pðlog IÞ, one can formally derive Q(I) as

(25),

QðIÞ5Pðlog IÞ d

dI
log I

����
����

5
1

I
Pðlog IÞ5e2y PðyÞ ;

(1)

with log I � y. This relation serves us both in this theoretical

section and in the experimental Results section, where we esti-

mate the empirical distribution for Q(I) using this relation.

We now address the question: when is Q(I) unimodal while

Pðlog IÞ is multimodal?

Cytometry data is often amenable to modeling as a log-

normal mixture (e.g., (1)). To demonstrate the log/linear mis-

match we consider a mixture of two populations, character-

ized by the distribution of intensity. We define Pðlog IÞ as

follows:

Pðlog IÞ5 ð12aÞffiffiffiffiffiffiffiffiffiffi
2pr2

1

p e
2
ðlog I2y1Þ2

2r2
1 1

affiffiffiffiffiffiffiffiffiffi
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p e
2
ðlog I2y2Þ2

2r2
2 ; (2)

with y1;25log I1;2 which are the loci of the centers of the left

and right Gaussians in log-space, respectively, and r1;2

the log-space standard deviations. We then define QðIÞ5 1
I

Pðlog IÞ as in Eq. (1).

In Figure 1, to illustrate with typical measurement values,

we set I15100 and I251000 (arbitrary units) and a50:5,

while varying r15r2. This figure presents the three cases we

wish to contrast: on the left column, both Pðlog IÞ and Q(I)

are bimodal; in the central column, Pðlog IÞ is bimodal

whereas Q(I) is unimodal; on the right column, both Pðlog IÞ
and Q(I) are unimodal, a situation which we examine in more

detail in Eq. (4). Moreover, we see an example where even

when both are bimodal (left column), the loci of the modes

are different.
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Determining whether empirical data is multimodal is a

difficult task (e.g., (26)). Recently, this issue has been revisited

in detail (27). In the context of modeling FCM data (18), it was

addressed by using Hartigan’s dip test for unimodality (28).

Later, as a benchmark to our method we report the results of

Hartigan’s test on the experimental data. More details on Hari-

gan’s test can be found in Supporting Information.

We define y5log I and proceed to find the number of

extrema for P(y) and Q(I). We do this by simple differentia-

tion, demanding that the derivatives of P and Q equal zero as

a definition of extrema. This is achieved by recasting Eq. (2)

and its derivatives into the functions AðyÞ;B1ðyÞ;B3ðyÞ,
defined as,

AðyÞ5 a
12a

� � r1

r2

� �
e
ðy2y1Þ2

2r2
1

2
ðy2y2Þ2

2r2
2

B1ðyÞ5

y2y1

r2
1

11

y22y

r2
2

21

B3ðyÞ5
ðy2y1Þ=r2

1

ðy22yÞ=r2
2

:

(3)

The outcome of this approach is that, to find the extrema of

Q(I), one must find the solutions y�q for B1ðy�qÞ5Aðy�qÞ. Sim-

ilarly, for the extrema of Pðlog IÞ one must solve

B3ðy�pÞ5Aðy�pÞ. Full mathematical details on how these are

derived can be found in Supporting Information.

A(y) is the ratio of the two Gaussians in Eq. (2) and is

therefore always non-negative; this implies that any extre-

mum y� must satisfy B1ðy�qÞ � 0 and B3ðy�pÞ � 0. In the

Supporting Information, we derive that the condition for

extrema in Q(I) requires that d
dy

PðyÞ5PðyÞ whereas, of

course, extremizing Pðlog IÞ sets its derivative to zero, dem-

onstrating the fact that the loci of the modes for Pðlog IÞ and

Q(I) are manifestly different. The region where the log-space

distribution shows a second mode occurs when for B3ðy�pÞ5
Aðy�pÞ admits three solutions whereas B1ðy�qÞ5Aðy�qÞ admits

only one solution. Given that these equations are transcen-

dental, a graphical way to assess the number of solutions is

to plot AðyÞ;B1ðyÞ;B3ðyÞ and count the number of times B1

and B3 intersect A.

In Figure 2, we present an example of this graphical

method. The mismatch between the number of extrema of Pð
log IÞ and Q(I) is apparent whenever (red curve) B3ðyÞ inter-

sects A at three points, whereas (blue curve) B1ðyÞ only inter-

sects A once.

In the plots along the diagonal, we have r15r2 (as in

Fig. 1) which simplifies A(y) since the quadratic (Gaussian)

terms cancel, leaving only an exponential. This leads to a sim-

ple criterion to determine whether Pðlog IÞ itself admits one

or two modes—previously in Figure 1(right) we saw an exam-

ple where Pðlog IÞ is unimodal despite being generated from a

mixture. Graphically, we see that for B35A to have 3

solutions, log B3ðyÞ has to have a slope less than log AðyÞ
about the extremum y�p. In other words, d

dy
log B3ðyÞjy�p

� d
dy

log AðyÞjy�p , with equality as the threshold between 1 and

3 extrema. This leads to the following intuitive criterion,

ðy�p2y1Þðy22y�pÞ � r2 ) 3 extrema for Pðlog IÞ ; (4)

which states that for Pðlog IÞ to appear bimodal, it must have

an extremum (y�p) such that the variance of the individual

Figure 1. Log-normal mixture showing the mismatch in the number of peaks. Top row, red: Pðlog IÞ versus log I normalized to maximum

probability. Middle row, magenta: Q(I) versus I normalized to maximum probability, and plotted on a narrower range. Bottom row, blue:

Q(I) versus log I normalized to maximum probability, rescaling the x-axis as in Ref. 6. In the central column where r15r250:8; Pðlog IÞ
shows explicit bimodality whereas Q(I) is unimodal. Right column: in this case, the variance r2 is large enough (see Eq. (4)) that Pðlog IÞ
has only one mode even though it is modeled as a mixture. In all cases: I15100; I251000; a50:5 varying r1;25f0:4; 0:8; 1:2g (left to right col-

umns, respectively). Leftmost column shows axes. [Color figure can be viewed at wileyonlinelibrary.com]
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Gaussian components of Pðlog IÞ must be smaller than the

distance between y�p and the Gaussian centers. Substituting

for y�p � log 316; y15log 100, and y25log 1000 and r251:44

we see that the criterion in Eq. (4) is not satisfied and

indeed in Figure 1(right) and Figure 2(bottom right) we see

that Pðlog IÞ has only one mode. A similar condition can be

derived for Q(I), that is, d
dy

log B1ðyÞjy�q �
d
dy

log AðyÞjy�q , such

that,

ðy�q2y11r2Þðy22y�q2r2Þ � r2 ) 3 extrema for QðIÞ ;
(5)

it is, however, hard to compare the two bounds analytically

because the y�p which extremizes Pðlog IÞ is different from the

y�q which extremizes Q(I).

Experimental Methods

All data and MATLAB scripts used for the experimental

part of this work, together with accompanying MIFlowCyt

checklists detailing the data analysis, are freely available

online, as follows:

� All MATLAB scripts used to generate the plots and analyze

the data in github.com/AmirErez/BimodalLogspaceCytA/

tree/master/Scripts

� All data used in the manuscript and accompanying

MIFlowCyt checklists come from two experiments:

1. 20140920-OT1-dynamics—used for Figure 3 in the

manuscript.

2. FeinermanScience2008—previously published in Fei-

nerman et al. Science Vol. 321, Issue 5892, pp. 1081–

1084 (2008).

These data with their respective MIFlowCyt checklists are

available in github.com/AmirErez/BimodalLogspaceCytA/

tree/master/Data

All are accessible in https://github.com/AmirErez/Bimo-

dalLogspaceCytA. We briefly sketch the methods for each of

the two experiments:

Experiment 1. Primary mouse T lymphocytes (OT-1) were

activated ex vivo and cultured. OT-1 cells were activated by

peptide (SIINFEKL) treated and irradiated (3000 RAD) pri-

mary antigen presenting cells (APCs) from a C57BL/6 mouse.

OT-1 cells were labeled with an amine-reactive dye, CTV,

according to the manufactures protocol (Molecular Probes)

for in silico identification. Cells were allowed to rest for one

hour after CTV staining, and then distributed in a 96-well

v-bottom plate. Cells were then incubated with unique doses

of SRC inhibitor Dasatinib at a temperature of 378C for 5

min. After which, we added the peptide pulsed APCs (10

APCs to 1 OT-1 T cell) and pelleted mixture of cells by centri-

fugation for 10 s at 460 rcf at room temperature. The pellet

Figure 2. Graphical solution to count the number of extrema. We test our peak counting method, based on the same equations as in Fig-

ure 1, but with additional settings. (Vertical axis represents the functions A;B1;B3 according to the legend). When the red (blue) curves

intersect the dashed black line, Pðlog IÞ (Q[I]) are extremized. Dashed black: A(y), blue: B1ðyÞ and red: B3ðyÞ. The mismatch between the

number of extrema of Pðlog IÞ and Q(I) is apparent when the red curve intersects A at 3 points, whereas the blue curve only intersects A

once. In both cases, the loci of the extrema are different for the two distributions. The plots along the diagonal (which correspond to the

cases in Fig. 1) show the case r15r2 which simplifies A(y) to a straight line (the general case being a parabola) in these axes. [Color figure

can be viewed at wileyonlinelibrary.com]
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was then incubated at a temperature of 378C for 10 min, fol-

lowed by 15 min of chemical fixing with 2% PFA on ice and

then permeabilization with ice cold 90% MeOH. Samples

were kept at a temperature of 2208C until labeling for FCM.

Experiment 2. C57BL/6N splenocytes were pulsed for 2 h

with 100 nM SIINFEKL peptide, then irradiated (3000 RAD),

washed once and used as stimulator/feeder cells. OT-1 lym-

phocytes were harvested from auxiliary, brachial, and inguinal

lymph nodes as well as spleen (splenocytes were treated with

ACK lysis buffer to remove red blood cells), and mixed with

SIINFEKL-pulsed C57BL/6N splenocytes in complete RPMI.

After two days, cells were expanded by diluting twofold into

medium containing 100 pM IL-2. After four days, the cells

were again expanded by twofold dilution into medium with

IL-2. After one more day of culture, cells were harvested and

spun through a 1.09 density Ficoll-Paque Plus gradient (GE

Healthcare) to remove dead cells. Live cells were recovered,

washed twice in complete medium and resuspended at 1 mil-

lion/ml in complete medium with 100pM IL-2. Cells were

used for experiments between 6 and 8 days after primary stim-

ulation. The ppERK response to SRC and MEK inhibition was

measured using primary OT-1 T-lymphocytes activated with

RMA-S APCs. RMA-S cells were suspended in culture with

1 nM SIINFEKL peptide for 2 h at 378C, 5% CO2, and on a

rotator to guarantee mixing. During this time we labeled OT-

1 cells with an amine-reactive dye, CTV, according to the

manufactures protocol (Molecular Probes). We rested the OT-

1 cells one hour after CTV staining, and then distributed

them in a 96-well v-bottom plate. Each well was given various

doses of SRC inhibitor and MEK inhibitor and kept at 378C

for 5 min. Following the 5 min exposure to the inhibitors, we

added the peptide pulsed RMA-S (10 RMA-S to 1 OT-1 T

cell) and pelleted by centrifugation for 10 s at 460 rcf at room

temperature. This step guaranteed that both cell types, OT-1

and RMA-S, came into contact. The cells were allowed to acti-

vate for 10 min, followed by fixing on ice in 2% PFA, and

then permeabilized and stored in 90% MeOH at 2208C.

APCs were pulsed with serial dilutions of OVA or variant pep-

tides for 2 h at 378C, then washed with T cell medium at the

time of harvest, and resuspended with anti-CD8 (53–6.72)-

Fab-coated T cells in their conditioned media in a V-bottom

96-well plate (Corning). Fab-coating was performed 10 min

before cell use by incubating T cells with 10 lg/ml of Fab frag-

ment. T:APC cell contacts were synchronized using a quick

centrifugal spin (10 s at 400 g). Plates containing T:APC con-

jugates were placed on a water bath at 378C and incubated for

5 min. Supernatants were then discarded, T:APC conjugates

disrupted by vortexing, and cells resuspended in ice-cold 4%

paraformaldehyde for 15 min. Cells were then permeabilized

with ice-cold 90% methanol for 15 min on ice, and washed

twice with FACS buffer.

RESULTS—EXPERIMENTS

We now apply our analysis to experimental data, by ana-

lyzing two different experiments, described briefly in the

Methods section and in more detail in the MIFlowCyt check-

lists available online. Both experiments measure the distribu-

tion of Extracellular Signal-regulated Kinase (ERK)

phosphorylation (ppERK) signaling in CD81 primary mouse

T-cells responding to antigens.

In Experiment 1, the T-cells were inhibited by the SRC inhib-

itor Dasatinib. In Figure 3A, we see how commercially available

analysis software (FlowJo (29)) plots the distribution of ppERK in

such an experiment, which clearly shows a bimodal structure.

Figure 3B plots those same data, formally Pðlog IÞ : 5f̂
ð8751Þ
log I , the

probability density estimated from the data by taking the

Figure 3. Analysis of experimental data reveals the effect we describe in a real scenario. (A) Histogram of ppERK as plotted by FlowJo

(29); (B) Histograms for Pðlog IÞ (red,dots) and Q(I) (blue,dots) versus log I as estimated from the data binned logarithmically. Note that plot-

ting Q(I) versus log I is somewhat unusual but allows both P and Q to be plotted on the same axis. The red line shows the result of fitting P

ðlog IÞ to a gaussian mixture model (Eq. 2), and the blue line is the estimate for Q(I) from Pðlog IÞ according to Eq. (1). The blue star indicates

the location of the only maximum for Q(I) obtained from Eq. (8), despite the obvious two maxima in Pðlog IÞ (red). Hartigan’s unimodality

P-values for log I (red) and I (blue) are taken directly from the data without binning (35), corroborating that log I is bimodal whereas I is

unimodal. (C) (Vertical axis represents the functions A;B1;B3 according to the legend). Graphic solution of the extrema conditions as in Fig-

ure 2 explicitly reveals the three solutions for Pðlog I�Þ (red line intersects black dashed) as opposed to the single solution for QðI�Þ (the

blue line intersects the black dashed line up beyond the plotted area, solution also plotted as blue star in the middle plot), indicating that

Q(I) has only one mode. [Color figure can be viewed at wileyonlinelibrary.com]
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logarithm of the intensity of 8751 cells and binning it in bins of

size 0.2. Our procedure for estimating Pðlog IÞ gives the two

modes as in FlowJo (red dots) whereas Q(I) (derived using Eq.

[1]) has a single mode (blue dots). It also agrees with the results

of Hartigan’s unimodality P-values, pu, explained in more detail

in Supporting Information. We fit Pðlog IÞ as a Gaussian mixture.

This is followed in Figure 3C by the same extrema analysis as in

Figure 2, revealing that indeed Q(I) has a single maximum.

Given the prevalence and success of manual gating of FCM

data in many situations, we wondered whether gating in logarith-

mic scale could be justified a posteriori, based on biological

knowledge. In the final part of our analysis, we aimed to include

additional information such that the biological significance of the

distributions in our single-cell measurements is better captured.

We proceed to analyze Experiment 2, these data were

taken from Ref. 15. We briefly sketch what follows: by consid-

ering both ERK1 and ppERK levels, (the two being biologi-

cally related and experimentally correlated), we demonstrate

that dividing one by the other ameliorates the mismatch

between the logarithmic and linear representations. This is

done by examining their joint probability density function P2;

we suggest a probabilistic graphical model that describes the

correlations in the system and their dependence on cell-to-cell

variability; we suggest a way to normalize for cell-to-cell

variability, such that the mismatch (resulting from increased

uncertainty) between logarithmic and linear gates is resolved.

We then generalize our example and provide a simple experi-

mental and theoretical framework that allows less ambiguous

determination of positive/negative gates.

In Figure 4A, we show the experimental data we will use

in our proposed solution. We show a heat map of the joint

distribution of ppERK (IppERK) and total ERK1 (IERK1) expres-

sion in mouse CD81 T-cells. We estimate their joint distribu-

tion by using a kernel density estimator (30), which is used

only for presentation purposes and for demonstrating their

conditional independence (Fig. 5). Notably, whereas the two

modes of ppERK significantly overlap when plotted in the

marginal distribution Pðlog IppERKÞ, ppERK expression corre-

lates with total ERK1 levels in their joint distribution

P2ðlog IppERK; log IERK1Þ. The relation in Eq. (1) can be gener-

alized to P2ðlog IppERK; log IERK1Þ (see, e.g., [25]), however, it

will not be used in this manuscript.

To estimate the marginal densities Pðlog IppERKÞ and

Pðlog IERK1Þ we bin the log-intensity of 24,449 cells. Each

cell’s state encodes another latent variable, its activation

status—which tells if the cell has been successfully acti-

vated by the stimulus. To deduce the activation status, it

is common practice to use manual gating of the data by

drawing a boundary between the active and inactive states.

To account for the correlation between ERK1 and ppERK

we consider two manual gating strategies: (1) perpendicu-

lar gating (dashed red) according to Pðlog IppERKÞ with

IppERK > ppERK� considered an activated cell and (2)

Figure 4. Analysis of experimental data with two correlated

measurements. (A) The joint distribution P2ðlog IppERK; log IERK1Þ as

a heat map with its marginals plotted on the top and on its right.

The correlation between ppERK and ERK1 levels is clear in

the data. Dashed red (gray) lines are proposed manual gates

according to the marginal (joint) distributions Pðlog IppERKÞ
P2ðlog IppERK; log IERK1Þ
� 	

. (B) Bayesian network depicted as a graph-

ical model to show the flow of influence on the measurement of

ppERK. The pair ERK1 and ppERK are in a template to suggest

that there exist other pairs of correlated observables that depend

on activation status and cell-to-cell variability. [Color figure can

be viewed at wileyonlinelibrary.com]

Figure 5. Test for weak dependence of ERK1 and activation sta-

tus. Whereas independence implies that Pðlog ERK1Þ5
Pðlog ERK1jActivationÞ, in fact there is a weak dependence between

them regardless of whether we employ a vertical (red, defined by

threshold value ppERK�) or a diagonal (gray) gate (the diagonal gate

showing a weaker dependence); this is observed directly by noting

that the different distributions in this figure do not lie on top of each

other. To quantify this difference, the inset shows the mutual infor-

mation between Pðlog ERK1Þ and Pðlog ERK1jActivationÞ, with the

circle pointing out the particular concentration of stimulus (out of all

concentrations used in Ref. 15) we chose to plot in this example.

The chosen concentration has the highest mutual information, that

is, the lowest ability to discern between the active and inactive

states. [Color figure can be viewed at wileyonlinelibrary.com]
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diagonal gating according to the apparent correlation in P2

(dashed gray). We set the diagonal gate with a slope of

unity, meaning that we take the dividing line, reflecting

proportionality ppERK / ERK1, as a good way to parti-

tion the two states. We define “Inactive” to the left of the

dashed line, and “Active” to the right of it.

To understand the structure of these data, it is important

to characterize explicitly the dependency structure of our

observables (ERK1, ppERK), the latent activation status, and

the influence of external factors on these three. The existence

of two peaks in ppERK which appear distinct from each other

but correlated with ERK1 levels, guides us to use a Bayesian

network to capture these features in the data as a graphical

model. First - we test whether ERK1 and the cell’s activation

status are independent. In Figure 5, we see that whereas inde-

pendence implies that Pðlog ERK1Þ5Pðlog ERK1jActivationÞ,
in fact there is a weak dependence between them regardless of

whether we employ a vertical (red) or a diagonal (gray) gate

(the diagonal gate showing a weaker dependence). The weak

dependence between activation state and ERK1 levels is rea-

sonable, if we account for cell-to-cell variability, since for a

given stimulus some cells inevitably respond differently from

the typical cell (31).

We summarize the causal structure for this system in Fig-

ure 4B which depicts a probabilistic graphical model (32) of

the flow of influence from cell-to-cell variability and activa-

tion signal, to ERK1 levels and activation status, and finally to

the distribution of ppERK. We depict the pair ERK1-ppERK

in a template (rectangles), to suggest to the reader the exis-

tence of multiple other pairs. Thus, by formalizing the flow of

influence of cell-to-cell variability on the observed fluores-

cence signal we provide reasoning for what follows.

We proceed to show how to better resolve the log-space

peak; this recipe, together with the model in Figure 4B can be

used a priori in automatic gating and clustering algorithms to

prevent some of the mismatch between logarithmic and linear

binning strategies. For stochastic modeling, such a structure

presents an opportunity to analyze the structure and propaga-

tion of noise in the system (8,33).

We treat the broadness of ppERK modes as generated by

cell-to-cell variability in total ERK1 content - a reasonable

assumption since the noise in the phosphorylation of ERK is

negligible in comparison (34). We further neglect the indirect

influence between activation status and ERK1 levels due to its

weakness (checked in Fig. 5). Thus we approximate that the

conditional independence between ERK1 and activation status

(given that both are influenced by cell-to-cell variability) is true

independence. This implies an approximately linear relation

IppERK / IERK1 given activation status. We define the normalized

intensity ~I 5IppERK=IERK1 as the ratio of ppERK to ERK1 inten-

sity, thereby eliminating the linear dependence of ppERK on

ERK1 levels and reducing uncertainty due to cell-to-cell vari-

ability. The resulting Pðlog ~I Þ may boast a sufficiently reduced

noise in ppERK such that a clear bimodal signature appears

Figure 6. By dividing ppERK readings by ERK1, we can ameliorate the mismatch between the two representations. (A) Pðlog IppERKÞ and Qð
IppERKÞ versus log IppERK (dots: data, lines: Gaussian mixture fit) together with (B) their extrema analysis, showing that the second mode in

log ppERK does not exist if the data is linearly binned. (C) The same treatment but for ~I 5IppERK=IERK1, (D) shows that both ~I and log ~I have

two modes, thus normalizing ppERK levels by total ERK1 maintains the bimodal structure both in Pðlog ~I Þ and in Qð~I Þ. In (B) and (D), the

vertical axis represents the functions A;B1;B3 according to the legend. [Color figure can be viewed at wileyonlinelibrary.com]
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regardless of logarithmic or linear binning of ~I . In Figure 6, we

show such an example, where in Figure 6A,B, Pðlog IÞ and Q(I)

do not agree on the number of modes, whereas in Figure 6C,D
~I 5IppERK=IERK1 do agree. These data have order 25,000 events

and so, similarly to Supporting Information Figure 7, Hartigan’s

test may not identify the number of peaks correctly, as is indi-

cated in the pu values.

Thus we demonstrate how by suitably accounting for

cell-to-cell variability one can reduce the measured noise so as

to circumvent the mismatch in the number of modes between

the logarithmic and linear treatment. For testing bimodality,

whereas our method relies on fitting a Gaussian mixture,

existing statistical tests, for example, Hartigan’s test, require

no fitting yet may lack statistical power when applied to typi-

cal experimental situations.

DISCUSSION

We conclude our analysis by making a more intuitive

argument. Above, we have demonstrated the theoretical and

experimental existence of a situation where Pðlog IÞ has two

modes when Q(I) has only one. But how does this come about?

Intuitively, by binning in logarithmic scale, we are effectively

making the bin sizes grow as I increases. A larger bin can only

lead to a higher count in that bin and so we might stumble

upon a regime where this creates a quasi-mode. This situation

and the same logic applies also when using more advanced

logarithmic-like transformations, (e.g., Logicle (2) and Vlog

(3)), as demonstrated in Figure 3A.

The scale-dependent bimodality as demonstrated in Fig-

ures 3 and 6A,B may be not uncommon. Specifically, one

must take extra care when attempting to manually gate, auto-

matically cluster or build dynamical models which rely on an

apparent bimodal structure, as it might depend on whether

the data was log-transformed or not. This becomes increas-

ingly relevant as cytometry moves forward to higher dimen-

sional measurements which become tractable only with

automatic gating schemes. Instead, one might consider plot-

ting Q(I) on the log-log scale, a presentation which preserves

the number of maxima, at the expense of the measure of the

distribution. It is possible to ameliorate the mismatch between

the two scales, as we demonstrate in Figure 6C,D, if one can

simultaneously measure correlated observables (in our exam-

ple, ppERK and ERK1). This allows to control for cell-to-cell

variability, increasing the resolution of the data. Recently, this

favorable scenario has become more attainable with the intro-

duction of mass cytometry—where one can rely on a large

number of channels without compromising the FCM panel.

Based on the analysis carried out in this article, we conjecture

that such extra channels, chosen wisely, can provide automatic

clustering/gating algorithms the right information needed to

make more reliable clustering and population defining. This is

a simple way to introduce knowledge of the biological struc-

ture of the data into otherwise objective clustering algorithms,

without compromising their objectivity. We propose and test

some features of a graphical model that captures the structure

of such dependencies and the propagation of noise from cell-

to-cell variability into the observed fluorescence signal. The

graphical model is used to motivate our suggestion of how to

ameliorate the mismatch between the linear and logarithmic

representations. Moreover, it is potentially useful for those

interested in correctly capturing these dependencies for auto-

matic gating and clustering algorithms.

Logarithmic transform of FCM intensity values is the

usual practice, but for some observations, for example, the

FSC and SSC channels, linear scale is typically used. In such

cases, there is no danger of mismatch between presentation.

When FCM data are logarithmically distributed, though we

caution on the use of Pðlog IÞ, we find it remarkable how well

the distribution of biological quantities resembles a log-

normal mixture.
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