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Universality of biochemical feedback and its application to immune cells
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We map a class of well-mixed stochastic models of biochemical feedback in steady state to the mean-field Ising
model near the critical point. The mapping provides an effective temperature, magnetic field, order parameter,
and heat capacity that can be extracted from biological data without fitting or knowledge of the underlying
molecular details. We demonstrate this procedure on fluorescence data from mouse T cells, which reveals
distinctions between how the cells respond to different drugs. We also show that the heat capacity allows
inference of the absolute molecule number from fluorescence intensity. We explain this result in terms of the
underlying fluctuations, and we demonstrate the generality of our work.
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I. INTRODUCTION

Positive feedback is ubiquitous in biochemical networks
and can lead to a bifurcation from a monostable to a bistable
cellular state [1–4]. Near the bifurcation point, the bistable
state often reflects a choice between two accessible but op-
posing cell fates. For example, in T cells, the distribution of
doubly phosphorylated ERK (ppERK) can be bimodal [4].
ppERK is a protein that initiates cell proliferation and is
implicated in the self- or non-self-decision between mounting
an immune response or not [4,5].

The bifurcation point is similar to an Ising-type critical
point in physical systems such as fluids, magnets, and su-
perconductors, where a disordered state transitions to one
of two ordered states at a critical temperature [6]. In fact,
universality tells us that the two should not just be similar, they
should be the same: because they are both bifurcating systems,
both types of systems should exhibit the same critical scaling
exponents and therefore belong to the same universality class
[6]. Although this powerful idea has allowed diverse physical
phenomena to be united into specific behavioral classes, the
application of universality to biological systems is still devel-
oping [7–14].

Biological tools such as flow cytometry, fluorescence mi-
croscopy, and RNA sequencing allow reliable experimental
estimates of abundance distributions, inspiring researchers to
seek to apply insights from statistical physics to biological
data. In particular, recent studies have demonstrated that bio-
logical systems on many scales, from molecules [15], to cells
[16–21], to populations [22–24], exhibit signatures consistent
with physical systems near a critical point. However, some
of these studies have come under scrutiny because some of
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the signatures, particularly scaling laws, can arise far from or
independent of a critical point [25–27]. Part of the problem
is that the identification of appropriate scaling variables from
data can be ambiguous, and one is often left looking for
scaling relationships in an unguided way.

Typical approaches to the interpretation of abundance dis-
tributions include fitting to either detailed mechanistic models
of the underlying reaction scheme, or to an effective descrip-
tion of the data such as a Gaussian or log-normal mixture
model. The former approach is usually difficult to parametrize
and difficult to generalize to other systems. The latter ap-
proach often suffers from numerical issues (the likelihood is
unbounded and the expectation-maximization algorithm can
lead to spurious solutions [28]). Moreover, the vicinity of
a bifurcation point is precisely where a mixture analysis is
most likely to fail. In contrast, mapping to a statistical physics
framework is expected to be universal, in the sense that the
precise microscopic details of a broad range of biochemical
models are unimportant near the bifurcation point, as they are
coarse-grained rather than particular reaction parameters.

Here we provide a framework for mapping well-mixed
stochastic models of biochemical feedback to the mean-field
Ising model, and we apply it to published data on T cells.
This allows us to extract effective thermodynamic quantities
from experimental data without needing to fit to a parametric
model of the system. This makes the theory applicable to
a broad class of biological datasets without worrying about
model selection or goodness-of-fit criteria. The theory pro-
vides insights on how T cells respond to drugs, and it reveals
distinctions between one type of drug response and another.
Furthermore, we find that one of the thermodynamic quan-
tities (the heat capacity) provides a way to estimate abso-
lute molecule number from fluorescence level in bifurcating
systems. We demonstrate that our results can be extended to
cases in which feedback is indirect, and we discuss further
extensions, including to spatiotemporal dynamics.
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FIG. 1. Setup and behavior of the model. (a) We consider well-
mixed stochastic biochemical networks described by an effective
feedback function fn. (b) Feedback produces either one or two stable
steady states. (c) The molecule number distribution is peaked around
these states or flat at the bifurcation point. (d) Mapping to the
Ising model reveals that the effective reduced temperature drives the
distribution to the unimodal (θ > 0) or bimodal (θ < 0) state [see
(c)], while the effective field h biases the distribution toward high
(h > 0) or low (h < 0) molecule number. Parameters: H = 3 and
nc = 100 in (b), (c), and (d); h = 0 in (b) and (c); and θ = 0 in (d)
(see also Appendix A).

II. RESULTS

We consider a reaction network in a cell where X is the
molecular species of interest, and the other species A, B, C,
etc. form a chemical bath for X [Fig. 1(a)]. The reactions of
interest produce or degrade an X molecule, can involve the
bath species, and in principle are reversible. We allow for
nonlinear feedback on X , meaning that the production of an
X molecule in a particular reaction might require a certain
number of X molecules as reactants. This leads to an arbitrary
number of reactions of the form

jrX + Y +
r

k+
r−⇀↽−

k−
r

( jr + 1)X + Y −
r , (1)

where in the rth reaction, jr are stoichiometric integers de-
scribing the nonlinearity, k±

r are the forward (+) and back-
ward (−) reaction rates, and Y ±

r represent bath species in-
volved as reactants (+) or products (−). A simple and well-
studied special case of Eq. (1) is Schlögl’s second model
[29–36], in which X is either produced spontaneously from
bath species A, or in a trimolecular reaction from two existing
X molecules and bath species B (i.e., R = 2, j1 = 0, j2 = 2,
Y +

1 = A, Y +
2 = B, and Y −

1 = Y −
2 = ∅).

We assume that molecules are well-mixed and that the
numbers of bath molecules are constant. The latter assumption
is equivalent to integrating out all species but X , such that the
feedback on X arises directly from X itself [Eq. (1)]. However,
in general the feedback will be indirect, with X regulating dy-
namic species in the bath that in turn regulate X (this is almost
certainly the case in the T cells we study here). Therefore, we

consider this more general case later in Sec. II D and show
that the results discussed below remain unchanged.

The master equation for the probability of observing n
molecules of species X according to Eq. (1) is

ṗn = bn−1 pn−1 + dn+1 pn+1 − (bn + dn)pn, (2)

where bn = ∑R
r=1 J+

rn and dn = ∑R
r=1 J−

rn are the total birth
and death propensities, and J+

rn = k+
r n+

r n!/(n − jr )! and J−
rn =

k−
r n−

r n!/(n − jr − 1)! are the forward and backward propen-
sities of each reaction pair. Here n±

r are the numbers of
molecules of the bath species involved in reaction r, and the
factorials account for the number of ways that X molecules
can meet in a reaction. The steady state of Eq. (2) is [37,38]

pn = p0

n∏
j=1

b j−1

d j
= p0

n!

n∏
j=1

f j, (3)

where p−1
0 = ∑∞

n=0(1/n!)
∏n

j=1 f j is set by normalization. In
the second step of Eq. (3) we define an effective birth propen-
sity fn ≡ nbn−1/dn corresponding to spontaneous death with
propensity n [Fig. 1(a)]. In general, fn is an arbitrary, nonlin-
ear feedback function governed by the reaction network. For
the Schlögl model, it is fn = [aK2 + s(n − 1)(n − 2)]/[(n − 1)
(n − 2) + K2], where we have introduced the dimensionless
quantities a ≡ k+

1 nA/k−
1 , s ≡ k+

2 nB/k−
2 , and K2 ≡ k−

1 /k−
2 . As

a ubiquitous example, we also consider the Hill function
fn = a + snH/(nH + KH ) with coefficient H . Importantly, the
inverse of Eq. (3),

fn = npn

pn−1
, (4)

allows calculation of the feedback function from the distri-
bution [39], as utilized when analyzing the experimental data
later in Sec. II B.

The quantity fn − n determines the dynamic stability: there
can be either one or two stable states n∗ [Fig. 1(b)], and
the transition from a monostable to a bistable regime occurs
at a bifurcation point [Fig. 1(c), inset]. These deterministic
regimes correspond stochastically to unimodal and bimodal
distributions pn, respectively, with maxima at n∗, while the
bifurcation point corresponds to a distribution that is flat on
top [Fig. 1(c)].

A. Ising mapping and scaling exponents

To understand the scaling behavior near the bifurcation
point, we expand the stability condition fn∗ − n∗ = 0 to third
order around a point nc satisfying f ′′

nc
= 0. This choice of nc

eliminates the quadratic term in the dynamic forcing fn −
n, equivalent to eliminating the cubic term in an effective
potential as in Ginzburg–Landau theory [40]. Defining the
parameters

m ≡ n∗ − nc

nc
, h ≡ 2( fnc − nc)

− f ′′′
nc

n3
c

, θ ≡ 2(1 − f ′
nc

)

− f ′′′
nc

n2
c

, (5)

the expansion fnc + f ′
nc

(n∗ − nc) + f ′′′
nc

(n∗ − nc)3/3! − n∗ =
0 becomes h − θm − m3/3 = 0. This expression is equiv-
alent to the expansion of the Ising mean-field equation
m = tanh[(m + h)/(1 + θ )] for small magnetization m, where
θ = (T − Tc)/Tc is the reduced temperature, and h is the
dimensionless magnetic field [40]. Therefore, in our system
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Hill

Inverse system size, 1/nc

0 0.005 0.01

L
oc

at
io

n
of

m
in

.,
θ∗

-0.01

-0.008

-0.006

-0.004

-0.002

0

(b)

Schlögl
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FIG. 2. (a) Heat capacity [Eq. (6)] is minimized at the bifurcation
point, corresponding to exponent α = 0. (b) The location of the
minimum approaches θ∗ → 0 as nc → ∞, as expected. Parameters:
H = 3, nc = 500, and h = 0.

we interpret m as the order parameter, θ as an effective
reduced temperature, and h as an effective field. Explicit
expressions for nc, θ , and h in terms of the biochemical
parameters and vice versa are given for the Schlögl and Hill
models in Appendix A.

We see in Figs. 1(c) and 1(d) that nc determines where
the distribution is centered, that θ drives the system to the
unimodal (θ > 0) or bimodal (θ < 0) state, and that h biases
the system to high (h > 0) or low (h < 0) molecule numbers.
Note that unlike in the Ising model, even when h = 0 an
asymmetry persists between the high and low states [see the
purple distribution in Fig. 1(c)]. The reason is that in the
master equation [Eq. (2)], unlike in Ginzburg-Landau theory,
fluctuations scale with molecule number, such that the high
state is wider than the low state.

The equivalence between our system and the Ising mean-
field equation near the critical point [Eq. (5)] implies that our
system has the same scaling exponents β = 1/2, γ = 1, and
δ = 3 as the Ising universality class in its mean-field limit
[40]. For completeness, we verify in Appendix B that these
scalings are indeed obeyed by the Schlögl and Hill models.

However, Eq. (5) does not explicitly determine the value
of the exponent α. The reason is that, unlike β, γ , and δ,
the exponent α depends on the entire distribution pn, not
just the maxima. Specifically, α concerns the heat capacity,
C|h=0 ∼ |θ |−α , which depends on the entropy S and thus
pn. The equilibrium definition C = T ∂T S generalizes to a
nonequilibrium system like ours when one uses the Shannon
entropy S = −kB

∑
n pn ln pn [41]. Since T = (1 + θ )Tc, we

have C = (1 + θ )∂θS, or

C

kB
= −(1 + θ )

∞∑
n=0

pn(1 + ln pn)

⎛
⎝ψn −

∞∑
j=0

p jψ j

⎞
⎠, (6)

where ψn ≡ (1/2) f ′′′
nc

n2
c

∑n
j=1( j − nc)/ f j . Equation (6) fol-

lows from performing the θ derivative using the expression
in Eq. (3), the expansion below Eq. (5), and the definition of
θ [Eq. (5)]. We see in Fig. 2(a) that when h = 0, C exhibits a
minimum at θ∗. We see in Fig. 2(b) that θ∗ vanishes as the sys-
tem size increases, nc → ∞. This implies that C|h=0 ∼ |θ |0 to
subquadratic order in θ , or α = 0, again consistent with the
Ising universality class in its mean-field limit. Interestingly,
whereas C is discontinuous in the mean-field Ising model
[40] and constant in the van der Waals model of a fluid [6],
it is minimized here; nevertheless, in all cases α = 0. Note
from Fig. 2(a) that C is negative near θ = 0; negative heat
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FIG. 3. Application of the theory to immune cell data. Upon
administration of either (a) MEK or (b) SRC inhibitor, experimental
distributions of T cell ppERK fluorescence intensity are unimodal
(bimodal) for high (low) doses. Insets show distributions of log
intensity for clarity. (c),(d) Feedback functions calculated from the
experimental distributions correspondingly exhibit either one or two
stable states. (e)–(g) Effective thermodynamic quantities calculated
from the data vary with drug dose in distinct ways for each drug. The
results in (c)–(g) corroborate those in [4], but with a much simpler
framework that has three parameters instead of five and requires
no fitting or prior biological knowledge of the system. Error bars:
standard error from filter windows 25 � W � 35 (see Appendix D).

capacity is a well-known feature of nonequilibrium steady
states [42–44].

B. Application to immune cell data

To demonstrate the utility of our theory, we apply it
to published data from T cells [4]. In these experiments,
chemotherapy drugs inhibit the enzymes MEK and SRC in
the biochemical networks of the cells. The inhibition results
in bimodal (low dose) or unimodal (high dose) distributions
of ppERK abundance, which is measured as fluorescence
intensity I by flow cytometry. The distributions are shown for
a range of drug doses in Figs. 3(a) and 3(b) (the insets show
distributions of log intensity for clarity). Experimental details
are given in the original publication [4] and are summarized
in Appendix C, along with the drugs and dose amounts.

First, we compute the feedback function f from each
distribution using Eq. (4) (see Appendix D). Figures 3(c) and
3(d) show the corresponding forcing functions [compare to
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Fig. 1(b)]. As expected, in each case we see that the forcing
function transitions from two stable states to one stable state
as the drug is applied.

Then, we compute Ic (the analog of nc in units of fluores-
cence intensity), θ , and h from the feedback function using
Eq. (5) (see Appendix D). These quantities are shown as a
function of drug dose in Figs. 3(e)–3(g). We see that the
behavior is different depending on whether MEK inhibitor
(MEKi) or SRC inhibitor (SRCi) is applied. Specifically,
MEKi decreases Ic, increases θ , and decreases h, whereas
SRCi only decreases h, leaving the other quantities un-
changed. Thus, the effective thermodynamic quantities can
differentiate cellular responses to different perturbations, such
as the application of different drugs.

Furthermore, the mapping provides an intuitive interpre-
tation of the drug responses. MEKi causes a transition from a
bimodal to a unimodal state in the expected way: by increasing
the reduced temperature θ from a negative to a positive value
[Fig. 3(f)]. In the process, Ic decreases [Fig. 3(e)], meaning
that the unimodal state is shifted to lower molecule number,
near the lower mode of the bimodal state [Fig. 3(a), inset].
In contrast, SRCi causes a transition from a bimodal to a
unimodal state in a different way: by decreasing the field while
leaving θ and Ic unchanged [Figs. 3(e)–3(g)]. In essence, the
distribution remains bimodal and unshifted, except that the
field causes the high mode to diminish in weight [Fig. 3(b),
inset]. Interestingly, the mean dose-response curves are simi-
lar for the two drugs [4], but our mapping elucidates precisely
how the transitions are different at the distribution level.
Related conclusions were drawn in [4], but those conclusions
relied on fitting the distributions to a five-parameter Gaussian
mixture model, which is expected to fail near the bifurcation
point. Here we use only three parameters and no fitting,
and we emerge with an intuitive interpretation in terms of
thermodynamic quantities.

Finally, we note that for both drugs the effective field
is negative at all doses [Fig. 3(g)]. The reason is that the
fluorescence distributions have long tails (which is why they
are often easier to visualize in log space); see Figs. 3(a) and
3(b). In the theory, a long tail is indistinguishable from a
low-molecule-number bias in the peak, which corresponds to
h < 0. We address the possible origins and implications of the
long tails in Sec. III.

C. Estimation of molecule number

We now apply the theory to compute the heat capacity
from the T cell data. Specifically, we compute C using
Eq. (6) (see Appendix D) for all drugs and doses used
in the experiments [4] (Appendix C). Unlike the other
thermodynamic quantities, C requires a conversion from
fluorescence intensity to molecule number because it depends
explicitly on the distribution pn [Eq. (6)]. Therefore, we
compute C for various values of the conversion factor I1,
where n = I/I1. The results are shown in Fig. 4. We see that
irrespective of I1 over four orders of magnitude, the data
closest to h = 0 (yellow) exhibit a global minimum in C at
θ = 0, as expected from Fig. 2(a). However, we also see that
the depth of the minimum agrees with that of the theory only
for the particular choice I1 ≈ 0.1 [Fig. 4(c)].
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FIG. 4. Estimation of molecule number by comparing heat ca-
pacity between theory and experiments. (a)–(d) Rough estimate of
fluorescence-to-molecule-number conversion factor I1 (see titles)
obtained by comparing depths of theory and experimental minima.
“Hill” refers to the theoretical curve produced by Hill-function
feedback as in Eq. (A9). Different symbols correspond to different
drugs. See Appendix C for drugs (shape) and doses (size). (e) More
precise estimate obtained from plotting the sum of squared errors
(SSE) for data within −�θ � θ � �θ and fitting to parabola (see
Appendix D for details). Here �θ = 0.05. (f) Estimate is insensitive
to the value of �θ . Theory parameters: H = 4, h = 0, and nc = Īc/I1,
where Īc = 730 is the average value across all experiments.

To obtain a more precise estimate of I1, we plot the sum of
squared errors between the data and the theory as a function of
I1 in Fig. 4(e). We focus on the bifurcation region by consider-
ing only values of θ within −�θ � θ � �θ , and we find that
our results are not sensitive to the choice of �θ [Fig. 4(f)].
This procedure (see the details in Appendix D) results in an
estimate of I1 = 0.5 ± 0.2, as seen in Fig. 4(f). This value of
I1 corresponds to n̄∗ = 170 000 ± 70 000 ppERK molecules
in the high mode averaged across all cases with no inhibitor. It
is possible to compare this value with previous measurements
on these cells. In two separate experiments, it was estimated
that there are approximately 100 000 [5] and 214 000 [45]
ERK molecules per cell, and that only about 50% of these
molecules are doubly phosphorylated during T cell receptor
activation [5] (see Appendix D). These considerations give a
range of roughly 50 000–107 000 ppERK molecules, which
is consistent with our estimate of 170 000 ± 70 000. The
agreement is especially notable given that T cell protein
abundances generally span six orders of magnitude, from tens
to tens of millions of molecules per cell [45].

Why does the heat capacity extract the conversion between
fluorescence intensity and molecule number? As mentioned
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above, α is the only exponent that is a function of pn instead
of just its maxima. This means that the plot of C versus θ

contains information not only about means or modes, but also
about fluctuations. The notion that fluctuation information is
essential for converting from intensity to molecule number
can be seen with a simpler example: a Poisson distribution.
Here we would have σ 2

I /Ī2 = σ 2
n /n̄2 = 1/n̄ = I1/Ī . From this

relation it is clear that information about not only the mean
(Ī) but also the fluctuations (σ 2

I ) in intensity is necessary and
sufficient to infer the conversion factor I1. In our case, the heat
capacity is extracting similar information, but for a bifurcating
system.

D. Generalization to indirect feedback

In the T cells, it is well known that ppERK does not apply
feedback to its own activation directly, but rather indirectly
via upstream components [4,5,46]. Therefore, we seek to
determine the extent to which the above results are sensitive
to our assumption in the theory that the feedback is direct. To
this end, we construct a minimal extension of the model in
Eq. (1) in which the feedback is indirect:

∅ k1−⇀↽−
k2

X, 2X
k3−⇀↽−
k4

D,

D
k5−→ D + A, A

k6−→ A + X, A
k7−→ ∅,

D
k8−→ D + B, B + X

k9−→ B, B
k10−→ ∅. (7)

Here X is produced, is degraded, and reversibly dimerizes
(first line); the dimer D produces a species A that produces
X and is degraded (second line); and the dimer also produces
a species B that degrades X and is degraded (third line).
Equation (7) is an extension of Eq. (1) because there are
multiple stochastic variables (X , D, A, and B), there are
irreversible reactions, and X feeds back on itself indirectly
through D, A, and B instead of directly.

The deterministic steady state of Eq. (7) is

0 = ṅ/k2 = c0 − n∗ + c2n2
∗ − c3n3

∗, (8)

where c0 ≡ k1/k2, c2 ≡ k3k5k6/(k2k4k7), c3 ≡ k3k8k9/

(k2k4k10), and the molecule numbers of D, A, and B have
been eliminated in favor of n∗ by setting their own time
derivatives to zero. Because Eq. (8) is cubic in n∗, we see
immediately that it has the same form as the expanded
Ising mean-field equation h − θm − m3/3 = 0 [see Eq. (5)].
Specifically, defining m = (n∗ − nc)/nc as in Eq. (5), the
choice nc = c2/(3c3) eliminates the term quadratic in m and
implies θ = 3c3/c2

2 − 1 and h = 9c0c2
3/c3

2 − 3c3/c2
2 + 2/3.

It immediately follows that this model has the same
exponents β = 1/2, γ = 1, and δ = 3 as the mean-field
Ising universality class.

To test whether the heat capacity for this model exhibits
the same features as that for the direct feedback model in
Fig. 2(a), we compute the steady-state marginal distribution
pn using stochastic simulations [47] of Eq. (7). Specifically,
we set k3/k4 = 1/nc and k5/k7 = k8/k10 = 1 to ensure that
the numbers of D, A, and B molecules, respectively, are on the
order of nc. We then set k4/k2 = k7/k2 = k10/k2 = ρ, where
ρ is a free parameter that determines whether the degradation
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FIG. 5. Verification that indirect feedback does not qualitatively
change modeling assumptions or results. (a) C and θ calculated from
the extended model with indirect feedback. (b) C and θ inferred
assuming the feedback is direct [Eq. (4)]. Compare with Fig. 2(a).
Parameters: nc = 100 and h = 0.

timescales of D, A, and B, respectively, are faster (ρ > 1) or
slower (ρ < 1) than that of X . These conditions, along with
the definitions of nc, θ , and h above, constitute nine equations
for nine reaction rates, plus k2, which sets the units of time.
Solving these equations yields expressions for the rates in
terms of nc, θ , h, and ρ that we use in the simulations.

Figure 5(a) shows the heat capacity C as a function of θ

for h = 0, nc = 100, and ρ = {0.1, 1, 10}, where C = (1 +
θ )∂θS is computed from the entropy S = −kB

∑
n pn ln pn by

numerical derivative. We see that for all ρ values, the curves
exhibit a minimum at θ = 0, implying α = 0, and they rise
more steeply for negative than for positive θ as in Fig. 2(a).

We then investigate whether Eq. (1) remains valid as a
coarse-grained description of the extended model in Eq. (7).
To answer this question, we infer values of nc, θ , h, and C
directly from the simulation data pn using the same protocol
as for the experimental data. That is, we compute fn via
Eq. (4), and then compute θ , h, and C from its derivatives at
nc according to Eqs. (5) and (6), where nc satisfies f ′′

nc
= 0. As

with the experimental data (see Appendix D), derivatives are
calculated using a Savitsky-Golay filter [48], although here we
apply the filter directly to fn and perform the analysis directly
in n space, not log space.

Figure 5(b) shows the result of this procedure for the
inferred heat capacity C as a function of the inferred θ . We
see that, as with the exact C and θ [Fig. 5(a)], the data exhibit
a minimum at θ = 0 and rise more steeply for negative than
for positive θ . Note that the values of C and θ are different
in (a) and (b), which is expected because the shape of pn is
not quantitatively the same in the two models of Eqs. (1) and
(7); nonetheless, the shape of the C versus θ curves remains
the same. We have checked that the inferred values of nc and
h are distributed around their known values of 100 and 0,
respectively, and that the shape persists across a range of filter
window sizes.

These results suggest that the main findings above are
not sensitive to our assumption that feedback is direct, and
therefore that we are justified in using Eq. (1) as a coarse-
grained model to analyze the T cell data.

III. DISCUSSION

We have employed the fact that a feedback-induced bi-
furcation exhibits the scaling properties of the mean-field
Ising universality class to provide a simple prescription for
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modeling and analyzing biological data. Contrary to existing
mixture-model approaches, our method is most valuable near
the bifurcation point, which is where biologically significant
cell-fate decisions are expected to take place. Our approach
provides the effective order parameter, reduced temperature,
magnetic field, and heat capacity from experimental distribu-
tions without fitting or needing to know the molecular details.
By applying the approach to T cell flow cytometry data, we
discovered that these quantities discriminate between cellular
responses in an intuitive, interpretable way, and that the heat
capacity allows estimation of the molecule number from flu-
orescence intensity for a bifurcating system. By generalizing
the theory to include indirect feedback, we demonstrated the
capacity to model realistic signaling cascades where indirect
feedback is common. Our approach should be applicable to
other systems observed to undergo a pitchfork-like bifurcation
and the associated unimodal-to-bimodal transition in abun-
dance distributions, but not to systems that have an absorbing
or extinction state, as they are expected to fall under a different
universality class [49,50].

The theory assumes only birth-death reactions and neglects
more complex mechanisms such as bursting [51,52] or pa-
rameter fluctuations [53,54]. These mechanisms are known to
produce long tails and may be responsible for the long tails
observed in the experimental data [Figs. 3(a) and 3(b)]. Cell-
to-cell variability (CCV) may also contribute to the long tails,
as it is known to be present in T cell populations [55]. Our
theory neglects CCV and instead assumes that the distribution
of molecule numbers across the population is the same as that
traced out by a single cell over time. Although CCV may
play an important role, one generically expects the role of
intrinsic fluctuations to be amplified near a critical point, and
models that ignore CCV have been shown to be sufficient
to explain both the bimodality [3] and variance properties
[56] of ppERK in T cells. Moreover, the fact that our theory
provides an estimate of the molecule number that is consis-
tent with other estimates suggests that intrinsic fluctuations
play a large role. Distinguishing between intrinsic fluctua-
tions and long-lived CCV is an important topic for future
work.

Our work provides key tools that can be used for a broader
exploration of biological systems. The approach is applica-
ble to any experimental dataset that exhibits unimodal and
bimodal abundance distributions, and could lead to a unified
picture of diverse cell types and environmental perturbations
in terms of effective thermodynamic quantities. At the same
time, several extensions of our work are natural. For example,
the dynamics of the theory could be probed to investigate
the consequences of critical slowing down for driven or
dynamically perturbed systems with feedback. Alternatively,
the theory could be generalized to systems that are not well-
mixed, such as intracellular compartments or communicating
populations, to investigate space-dependent universal behav-
ior and its biological implications.

IV. DATA AVAILABILITY

Data and code for all figures and the MIFlowCyt record are
available [59].
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APPENDIX A: MAPPING FOR SCHLÖGL AND HILL
MODELS

Here we provide the mapping from nc, θ , and h to the
biochemical parameters and vice versa for the Schlögl and
Hill models. For the Schlögl model, the feedback function is

fn = aK2 + s(n − 1)(n − 2)

(n − 1)(n − 2) + K2
. (A1)

The condition f ′′
nc

= 0 is satisfied by

nc = 3

2
+ 1

6

√
3(4K2 − 1). (A2)

The parameters θ and h are given by Eq. (5), where

fnc = (3a + s)K2 − s

4K2 − 1
, (A3)

f ′
nc

= (s − a)K2

(
3

4K2 − 1

)3/2

, (A4)

f ′′′
nc

= −6(s − a)K2

(
3

4K2 − 1

)5/2

. (A5)

These expressions are inverted to write the biochemical pa-
rameters a, s, and K in terms of nc, θ , and h:

K2 = 1

4
(3x2 + 1), (A6)

s = 3n3
c (θ + h) + ncx2 + x3

3n2
cθ + x2

, (A7)

a = (3x2 + 1)
[
3n3

c (θ + h) + ncx2 + x3
] − 4x5

(3x2 + 1)
(
3n2

cθ + x2
) , (A8)

where x ≡ 2nc − 3.
Similarly, for the Hill model we have

fn = a + s
nH

nH + KH
, (A9)

nc = K

(
H − 1

H + 1

)1/H

, (A10)

fnc = a +
(

H − 1

2H

)
s, (A11)

f ′
nc

= (H2 − 1)s

4Hnc
, (A12)

f ′′′
nc

= − (H2 − 1)2s

8Hn3
c

, (A13)

K = nc

(
H + 1

H − 1

)1/H

, (A14)
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FIG. 6. Scaling exponents β, γ , and δ for biochemical feedback
models agree with those of the mean-field Ising universality class.
Parameters: H = 3 and nc = 500.

s = nc
16H

(H2 − 1)[(H2 − 1)θ + 4]
, (A15)

a = nc
(H − 1)[(H + 1)2(θ + h) + 4]

(H + 1)[(H2 − 1)θ + 4]
. (A16)

In the Hill model, H is an additional free parameter.

APPENDIX B: SCALING EXPONENTS β, γ , AND δ

Here we verify that the stochastic Schlögl and Hill models
have the scaling exponents β, γ , and δ of the mean-field Ising
universality class. Specifically, we expect m = ±(−3θ )β for
h = 0 and θ < 0, with β = 1/2; χ = θ−γ or χ = (−2θ )−γ

for θ > 0 or θ < 0, respectively, with γ = 1, where χ ≡
(∂hm)h=0 is the dimensionless susceptibility; and m = (3h)1/δ

for θ = 0, with δ = 3. Figure 6 computes these quantities
from the parameters and maxima of pn for the Schlögl and Hill
models using the mapping in Eq. (5). We see that the scalings
hold, as expected.

APPENDIX C: EXPERIMENTAL METHODS

The experimental data analyzed in Fig. 3, along with a
detailed description of the experimental methods, have been
published previously [4]. In this appendix, we briefly summa-
rize the experimental system and methods. The drugs and dose
ranges used in Figs. 3 and 4 are listed in Table I.

The data investigate inhibition of the antigen-driven MAP
kinase cascade in primary CD8+ mouse T cells. A natural
way to stimulate T cells is to load a peptide (a fragment of an
antigenic protein that the T cells are programed to recognize)
onto antigen-presenting cells. We achieve this by incubating
RMA-S cells with antigen at 37 oC. At the same time, we har-
vest the spleen and lymph nodes of a RAG2−/− OT1 mouse,
which has T cells specific only to the ovalbumin peptide with
the amino acid sequence SIINFEKL. When we mix the OT1

TABLE I. Drugs and dose ranges of experimental data [4]. Doses
are spaced logarithmically. Figure 3 uses PD325901 and dasatinib.
Figure 4 uses all drugs.

Drug Inhibits Dose range (nM) Shape in Fig. 4

PD325901 MEK 0.09–1000 Up triangle
AZD6244 MEK 2.4–5000 Down triangle
Trametinib MEK 0.5–1000 Right triangle
Dasatinib SRC 0.09–1000 Circle
Bosutinib SRC 0.5–1000 Square
PP2 SRC 24–50 000 Diamond

T cells with the antigen-loaded RMA-S cells, we expose the
OT1 T cells to their activating peptide. In response, the T cells
activate their receptors through a SRC Family kinase (Lck).
This triggers an enzymatic cascade, which in turn actives Ras-
Raf-MEK-ERK leading to double phosphorylation of ERK,
rendering it capable of communicating with the nucleus. By
waiting for 10 min, the signaling reaches steady state and the
distribution of the abundance of doubly phosphorylated ERK
(ppERK) is the readout.

To measure the abundance of ppERK, we use fluorescence
cytometry. Specifically, we introduce ppERK-targeted anti-
bodies that are preconjugated with a fluorescent dye. Because
antibodies selectively attach to their target molecule with
negligible false-positives, the fluorescence intensity of the dye
is proportional to the abundance of ppERK. To measure the in-
tensity, approximately 30 000 cells per sample are passed one-
by-one through a microfluidic device where they encounter a
series of excitation lasers. Each cell yields one intensity value,
and the histogram provides an estimate of the distribution of
ppERK abundance across the population. We assume that the
distribution across the population is a fair representation of the
steady-state distribution of ppERK abundance of a single cell.
This is reasonable (and is the accepted practice) since while
the cells are alive and the experiment is taking place, they are
in a dilute suspension (approximately 30 000 cells in 100 μL),
not close enough together to influence each other.

APPENDIX D: EXPERIMENTAL DATA ANALYSIS

We calculate the forcing functions and the effective ther-
modynamic quantities Ic, θ , h, and C from an experimental
intensity distribution using the following procedure. First, we
set n = I/I1 to convert p(I ) to pn, where the intensity of one
molecule I1 converts from intensity I to molecule number n.
We will see below that only C will depend on the value of I1.

Next, because the experimental distributions are long-
tailed, we convert Eq. (5) to ln I space for numerical stability.
Here we provide the necessary conversions between functions
of n from the theory, and functions of � ≡ ln I from the
experiments, as the probability distributions over n and � do
not have the same functional forms [57]. In what follows,
a prime denotes the derivative of a function with respect to
its argument (n for f ; and � for q, Q, and φ). � and n are
related as

� = ln(I1n), n = e�

I1
. (D1)
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We denote the distribution of � as q(�). Approximating n as
continuous, probability conservation requires

q(�) = pn

d�/dn
= npn. (D2)

Using Eq. (D2), the feedback function [Eq. (4)] is

fn = npn

pn−1
= (n − 1)

npn

(n − 1)pn−1
= (n − 1)

q(�)

q(�̃)
, (D3)

where, using Eq. (D1),

�̃ = ln[I1(n − 1)] = ln(I1n) + ln(1 − ε) ≈ � − ε. (D4)

The last steps define ε ≡ 1/n and assume that for most values
of n with appreciable probability we have ε 
 1. Therefore,
Eq. (D3) becomes

fn = n(1 − ε)
q(�)

q(� − ε)
≈ n(1 − ε)

q(�)

q(�) − εq′(�)

= n(1 − ε)

1 − εq′/q
≈ n(1 − ε)

(
1 + ε

q′

q

)
≈ n

[
1 + ε

(
q′

q
− 1

)]

= n + q′

q
− 1, (D5)

where we have kept to first order in ε. Defining φ(�) ≡ fn − n,
from Eq. (D5) we have

φ(�) = fn − n = q′

q
− 1 = Q′. (D6)

In the last step, we define Q(�) ≡ −� + ln q so that φ is com-
puted as a total derivative, which we find more numerically
stable. The φ(�) are the forcing functions plotted in Figs. 3(c)
and 3(d).

The point nc is defined by f ′′
nc

= 0. Equation (D1) implies

∂n = I1e−�∂�, (D7)

such that the condition f ′′
nc

= 0 becomes

0 = ∂2
n f = ∂2

n (φ + n) = ∂2
n φ = (I1e−�∂�)2φ

= I1e−�∂�(I1e−�∂�φ) = I2
1 e−�

(−e−�φ′ + e−�φ′′)
= (

I1e−�
)2(

φ′′ − φ′). (D8)

Therefore, we define a point �c by

φ′′(�c) = φ′(�c). (D9)

Numerically, we enforce Eq. (D9) by writing it as 0 =
∂�(φ′ − φ), and therefore

�c = argmax�

(
φ′ − φ

)
. (D10)

Then

Ic = e�c , nc = e�c

I1
(D11)

from Eq. (D1).
Derivatives of f with respect to n at nc are related in a

straightforward way to derivatives of φ with respect to � at �c.
First, the zeroth derivative is, by Eq. (D6),

fnc = φ(�c) + nc, (D12)
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FIG. 7. Demonstration of analysis procedure for 3.4 nM of MEK
inhibitor PD325901. Parameters: L = 100 and W = 25.

where nc is defined in Eq. (D11). Then, using Eq. (D7), the
first derivative is

f ′
nc

= ∂n[φ + n]nc = ∂n[φ]nc + 1 = [
(I1e−�∂�)φ

]
�c

+ 1

= I1e−�cφ′(�c) + 1 = φ′(�c)

nc
+ 1. (D13)

Finally, by a similar procedure, the third derivative is

f ′′′
nc

= 1

n3
c

[φ′′′(�c) − 3φ′′(�c) + 2φ′(�c)]

= 1

n3
c

[φ′′′(�c) − φ′(�c)], (D14)

where the second step uses Eq. (D9). Using Eqs. (D11)–
(D14), θ and h [Eq. (5)] become

θ = 2(1 − f ′
nc

)

− f ′′′
nc

n2
c

= −2φ′(�c)

φ′(�c) − φ′′′(�c)
, (D15)

h = 2( fnc − nc)

− f ′′′
nc

n3
c

= 2φ(�c)

φ′(�c) − φ′′′(�c)
. (D16)

Note that they do not depend on I1.
To estimate the derivatives in Eqs. (D15) and (D16), we

apply a Savitsky-Golay filter to the experimental q(�) [48].
Savitsky-Golay filtering replaces each data point with the
value of a polynomial of order J that is fit to the data within
a window W of the point. Since we require three derivatives
of φ(�) [Eqs. (D15) and (D16)], which depends on the first
derivative of q(�) [Eq. (D6)], we use the minimum value
J = 4. Thus, the procedure requires the adjustable parameter
W/L, where L is the number of ln I bins. We find that L = 100
and W = 25 suffice [Figs. 3, 4, and 5(b)], and that results are
robust to W/L.

The analysis is demonstrated for an example experimental
distribution in Fig. 7. In summary, we do the following:

(i) Plot q(�) from the data using L bins [Fig. 7(a), black].
(ii) Filter q(�) using window W [Fig. 7(a), red].
(iii) Compute φ(�) using Eq. (D6) [Fig. 7(b)].
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(iv) Compute �c using Eq. (D10) [Fig. 7(c)].
(v) Compute Ic, θ , and h from �c, φ, and its derivatives

using Eqs. (D11), (D15), and (D16).
(vi) Compute pn from the data using I1.
(vii) Compute C/kB from pn, θ , nc [Eq. (D11)], f ′′′

nc

[Eq. (D14)], and fn [Eq. (D5)] using Eq. (6).
Figure 7(d) shows that Ic falls between the maxima as

expected, and that θ and h are negative corresponding to a dis-
tribution that is bimodal and skewed to the left, respectively.

To estimate the value of I1, consider χ2, defined as

χ2 =
N∑

i=1

1

σ 2
i

[
Ci

kB
− C(θi )

kB

]2

, (D17)

where N is the number of data points, Ci/kB is the value of
the heat capacity for each data point, C(θi )/kB is the predicted
value of the heat capacity at the location θi of that data point,
and σ 2

i is the variance for data point i. Under the simplifying
assumption that σ 2

i takes the same value σ 2 for all data points,
we have χ2 = s/σ 2, where s is the sum of squared errors
plotted in Fig. 4(e). As a function of I1, χ2 should scale
quadratically near its minimum,

χ2 = (I1 − Ī1)2

σ 2
I1

+ const, (D18)

where the location and curvature of the minimum give the best
estimate Ī1 and error in the estimate σI1 , respectively [58]. In
terms of s, we have

s = σ 2 (I1 − Ī1)2

σ 2
I1

+ s∗, (D19)

where s∗ is the minimal value. The value σ 2 is, by definition,
the average squared deviation of the data from the theory [58],

σ 2 = 1

N

N∑
i=1

[
Ci

kB
− C(θi )

kB

]2

= s∗

N
, (D20)

here evaluated at the minimum s∗. Inserting this result into
Eq. (D19), we obtain

s = s∗
[

(I1 − Ī1)2

Nσ 2
I1

+ 1

]
. (D21)

We see that if I1 deviates from Ī1 by σI1 , then s is larger
than its minimal value by a factor of 1 + N−1. This crite-
rion, illustrated by the black line in Fig. 4(e), is used to
determine σI1 .

Figure 4(e) is restricted to data whose θ values are less than
or equal to �θ = 0.05 in magnitude, of which there are N =
20 points. As �θ increases, N increases, and the minimum of
s also becomes less sharp. These effects compensate, yielding
an estimate of I1 whose value and error are insensitive to �θ ,
as seen in Fig. 4(f). Averaged across �θ values, we find I1 =
0.5 and σI1 = 0.2, as reported in the main text.

We compare our estimate of ppERK molecule number to
two previous studies. In [5], it was estimated that there are
100 000 ERK molecules per cell (see the Results section
in [5]). From [45], we estimate that there are 214 000 ERK
molecules per cell. Specifically, from the Excel file associated
with Fig. 1 in [45], we sum the mean number (column I)
of ERK1 (also called MAPK3, row 2345) and ERK2 (also
called MAPK1, row 874) to obtain 214 000 molecules to three
significant digits. In [5], it was estimated that 50% of ERK
molecules are doubly phosphorylated during T cell receptor
activation (see the caption of Fig. S2 in [5]).
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