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Critical slowing down in biochemical networks with feedback
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Near a bifurcation point, the response time of a system is expected to diverge due to the phenomenon of critical
slowing down. We investigate critical slowing down in well-mixed stochastic models of biochemical feedback by
exploiting a mapping to the mean-field Ising universality class. We analyze the responses to a sudden quench and
to continuous driving in the model parameters. In the latter case, we demonstrate that our class of models exhibits
the Kibble-Zurek collapse, which predicts the scaling of hysteresis in cellular responses to gradual perturbations.
We discuss the implications of our results in terms of the tradeoff between a precise and a fast response. Finally,
we use our mapping to quantify critical slowing down in T cells, where the addition of a drug is equivalent to a
sudden quench in parameter space.
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I. INTRODUCTION

Critical slowing down is the phenomenon in which the
relaxation time of a dynamical system diverges at a bifur-
cation point [1]. Biological systems are inherently dynamic,
and therefore one generally expects critical slowing down to
accompany transitions between their dynamic regimes. In-
deed, signatures of critical slowing down, including increased
autocorrelation time and increased fluctuations, have been
shown to precede an extinction transition in many biological
populations [2,3], including bacteria [4], yeast [5], and entire
ecosystems [6]. Similar signatures are also found in other
biological time series, including dynamics of protein activity
[7] and neural spike dynamics [8].

Canonically, critical slowing down depends on scaling
exponents that define divergences along particular parameter
directions in the vicinity of a critical point [9]. Therefore, con-
necting the theory of critical slowing down to biological data
requires identification of thermodynamic state variables, their
scaling exponents, and a principled definition of distance from
the critical point. However, in most biological systems it is
not obvious how to define the thermodynamic state variables,
let alone scaling exponents and distance from criticality. In a
previous study [10] we showed how near a feedback-induced
pitchfork bifurcation, a class of biochemical systems can be
mapped to the mean-field Ising model, thus defining the state
variables and their associated scaling exponents. A followup
study further investigated the relationship between bifurcation
and criticality [11]. These earlier studies provide a starting
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point for the investigation of critical slowing down in such
systems, as well as how to apply such a theory to experimental
data.

Additionally, most studies of critical slowing down in
biological systems investigate the response to a sudden ex-
perimental perturbation (a “quench”), such as a dilution or
the addition of a nutrient or drug. This leaves unexplored the
response to gradual environmental changes, a common natural
scenario. When a gradual change drives a system near its crit-
ical point, critical slowing down delays the system’s response
such that no matter how gradual the change, the response lags
behind the driving. In physical systems this effect is known
as the Kibble-Zurek mechanism [12,13], which predicts these
nonequilibrium lagging dynamics in terms of the exponents
of the critical point. It remains unclear whether and how the
Kibble-Zurek mechanism applies to biological systems.

Here we investigate critical slowing down for well-mixed
biochemical networks with positive feedback. Using our pre-
viously derived mapping [10], we show theoretically that
critical slowing down in our class of models proceeds ac-
cording to the static and dynamic exponents of the mean-field
Ising universality class. The mapping identifies an effective
temperature and magnetic field in terms of the biochemical
parameters, which defines a distance from the critical point.
We define response time as the time it takes the system to
reach a new steady state, and we investigate the dependence
of the response time to a quench and the quench param-
eters. We then show that our system, when driven across
its bifurcation point, falls out of steady state in the manner
predicted by the Kibble-Zurek mechanism, thereby extending
Kibble-Zurek theory to a biologically relevant nonequilibrium
setting. Finally, as a proof of concept for the application of our
theory on experimental data, we perform quench experiments
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on immune cells and use our theory to interpret the response.
We find that drug-induced quenches that take an immune cell
closer to its critical point result in longer response times, in
qualitative agreement with our theory. Our work elucidates
the effects of critical slowing down in biological systems with
feedback, and provides insights for interpreting cell responses
near a dynamical transition point.

II. RESULTS

We consider a well-mixed reaction network in a cell where
X is the molecular species of interest, and the other species,
A, B, C, etc., form a chemical bath for X [Fig. 1(a)]. Whereas
previously we considered only the steady-state distribution of
X [10], here we focus on dynamics in and out of steady state.
Specifically, as shown in Fig. 1(b), we consider (i) steady
state, where the bath is constant in time; (ii) a quench, where
the bath changes its parameters suddenly; and (iii) driving,
where the bath changes its parameters slowly and contin-
uously. In each case we are interested in a corresponding
timescale: (i) the autocorrelation time τc of X , (ii) the response
time τr of X , and (iii) the driving time τd of the bath.

First, we review the key features of our stochastic frame-
work for biochemical feedback and its mapping to the mean-
field Ising model [10]. We consider an arbitrary number of
reactions r in which X is produced from bath species Y ±

r
and/or X itself (feedback),

jrX + Y +
r � ( jr + 1)X + Y −

r , (1)

where jr are stoichiometric integers. The probability of ob-
serving n molecules of species X in steady state according to
Eq. (1) is

pn = p0

n!

n∏
j=1

f j, (2)

where p−1
0 = ∑∞

n=0(1/n!)
∏n

j=1 f j is set by normalization,
and fn is a nonlinear feedback function governed by the
reaction network. The inverse of Eq. (2),

fn = npn

pn−1
, (3)

allows calculation of the feedback function from the distribu-
tion. The function fn determines an effective order parameter,
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FIG. 1. (a) Inside a cell, a chemical species X with molecule
number n exists in a bath of other species. (b) We consider steady-
state, quench, and driven dynamics for the bath, and we focus on
the autocorrelation time τc, response time τr , and driving time τd ,
respectively.

reduced temperature, and magnetic field,

m ≡ n∗ − nc

nc
, h ≡ 2

(
fnc − nc

)
− f ′′′

nc
n3

c

, θ ≡ 2
(
1 − f ′

nc

)
− f ′′′

nc
n2

c

, (4)

respectively, where nc is defined by f ′′
nc

= 0, and n∗ are the
maxima of pn. Qualitatively, nc sets the typical molecule
number, θ drives the system to a unimodal (θ > 0) or bimodal
(θ < 0) state, and h biases the system to high (h > 0) or
low (h < 0) molecule numbers. The critical point occurs at
θ = h = 0 and corresponds to a pitchfork bifurcation in the
biochemical state space. The state variables m, θ , and h,
and the heat capacity C, scale according to the exponents
α = 0, β = 1/2, γ = 1, and δ = 3 of the mean-field Ising
universality class. Detailed analysis of this mapping in steady
state is found in our previous work [10].

Near the critical point, all specific realizations of a class
of systems scale in the same way, and therefore it suffices
to consider a particular realization of Eq. (1) from here on.
We choose Schlögl’s second model [10], a simple and well-
studied case [14–21] in which X is either produced sponta-
neously from bath species A, or in a trimolecular reaction from
two existing X molecules and bath species B,

A
k+

1−⇀↽−
k−

1

X, 2X + B
k+

2−⇀↽−
k−

2

3X. (5)

In this case the birth and death propensities are bn = k+
1 nA +

k+
2 nBn(n − 1) and dn = k−

1 n + k−
2 n(n − 1)(n − 2), respec-

tively, in terms of the reaction rates and the numbers
of A and B molecules. The steady-state distribution is
pn = p0

∏n
j=1 b j−1/d j [22,23], and by Eq. (3) the feedback

function is

fn = aK2 + s(n − 1)(n − 2)

(n − 1)(n − 2) + K2
, (6)

where we have introduced the dimensionless quantities a ≡
k+

1 nA/k−
1 , s ≡ k+

2 nB/k−
2 , and K2 ≡ k−

1 /k−
2 . Given Eqs. (4) and

(6), the effective thermodynamic variables nc, θ , and h can be
written in terms of a, s, and K or vice versa [10], with 1/k−

1
setting the units of time.

A. Critical slowing down in steady state

In steady state, critical slowing down causes correlations to
become long-lived near a dynamical transition point. Qualita-
tively, the fixed point is transitioning from stable to unstable,
and therefore the basin of attraction is becoming increasingly
wide. As a result, a dynamic trajectory takes increasingly long
excursions from the mean, making it heavily autocorrelated.
The autocorrelation time τc diverges at the critical point
according to [24]

τc|h=0 ∼ |θ |−νz, (7)

τc|θ=0 ∼ |h|−νz/βδ, (8)

where we expect νz = 1 for mean-field dynamics [9,25]. Here
the autocorrelation time τc is defined as

τc = 1

κ (0)

∫ ∞

0
dt κ (t ), (9)
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FIG. 2. Critical slowing down in steady state. (a) Autocorrelation
time τc in Schlögl model [Eq. (9)] peaks with field h when reduced
temperature θ = 0. Height increases and location moves to h = 0 as
molecule number nc increases. Time is in units of 1/k−

1 . (b) At large
nc, τc scales with |h| with expected exponent of νz/βδ = 2/3. Inset:
τc at θ = h = 0 scales as n1/2

c . In panel (a) and inset of panel (b), τc

is calculated using eigenfunctions with cutoff N = max(100, 3nc );
in the main panel of (b), τc is calculated using batch means with
250 trajectories, duration T = 105, and batch time τb = 2, 222 (see
Appendix A).

where κ (t ) = 〈n(0)n(t )〉 − n̄2 is the steady-state autocorrela-
tion function, κ (0) = σ 2 is the variance, and we have taken
the start time to be t = 0 without loss of generality because
the system is in steady state.

To confirm the value of νz, we plot τc versus h at θ = 0
[Eq. (8)]. We calculate τc either directly from the master
equation or from stochastic simulations [26] using the method
of batch means [27] (see Appendix A). The results are shown
in Fig. 2. We see in Fig. 2(a) that τc indeed diverges with
h, and that the location of the divergence approaches the ex-
pected value h = 0 as the molecule number nc increases. We
also see that the height of the peak increases with nc due to the
rounding of the divergence [28]. The inset of Fig. 2(b) plots
this dependence: We see that τc at the critical point θ = h = 0
scales like n1/2

c for large nc (the application of this dependence
to dynamic driving will be discussed in Sec. II C). Finally, we
see in the main panel of Fig. 2(b) that when nc is sufficiently
large, τc falls off with |h| with the expected scaling exponent
of νz/βδ = 2/3. Taken together, these results confirm that the
divergence of the autocorrelation time in the Schlögl model
obeys the static exponents of the mean-field Ising universality
class (βδ = 3/2) and the dynamic expectation for mean-field
systems (νz = 1).

B. Approach to steady state following a sudden quench

When subjected to a sudden environmental change
(a quench), the system will take some finite amount of time
to respond [Fig. 1(b), middle]. How does the response time
depend on the quench parameters? We expect that if a quench
takes the system closer to its critical point, the response time
should be longer due to critical slowing down [29]. To make
this expectation quantitative, we define the response time τr in
terms of the dynamics of the mean molecule number n̄ as

τr = 1

n̄(0)

∫ tmax

0
dt n̄(t ), (10)

where the quench occurs at t = 0, we define n̄(t ) = n̄(t ) −
n̄(tmax), and we ensure that tmax 	 τr (see caption of Fig. 3).

FIG. 3. Response to sudden quench. (a) Starting from six steady
states at (hi ∈ {±10−3/4}; θi ∈ {0, ±10−3/4}) (black squares) we sud-
denly quench the system paramters to a range of values with hf < 0
or hf > 0, as depicted. Colors correspond to the choice of hi, hf ;
see key in panel (a) and legend in panel (b). The region shaded
in grey corresponds to θ, h values that yield a bimodal pn, where
n̄(t ) is no longer a useful observable. (b) Following each quench,
we measure the time it takes to reach the new steady state τr using
stochastic simulations [26] and Eq. (10). In all simulations, nc = 104

and tmax = 1000 	 τc > τr . Time is in units of 1/k−
1 .

To test whether the response time increases with proximity
to the critical point, we must define initial values θi and hi for
the environment before the quench, and a series of values θ f

and h f for the environment after the quench that are varying
distances from the critical point θ = h = 0. We consider three
scenarios, depicted in Fig. 3(a): Quenching only h (circles),
quenching h and θ in a correlated manner (upward pointing
triangles), and quenching h and θ in an anticorrelated manner
(downward pointing triangles). We do not consider quenches
with an initial or final pn that is bimodal, i.e., starting or
ending with θ < 0 and |h| � 2

3 (−θ )3/2, shown in gray in
Fig. 3(a) [10]. The reason is that such bimodal dynamics
involve interpeak as well as intrapeak timescales; moreover,
the mean number n̄(t ) is no longer a useful observable. For
these reasons, we limit our investigation to quenches where
pn is unimodal, both before and after the quench.

We compute n̄(t ) from stochastic simulations [26]. We start
in steady state for a given (θi, hi ), depicted as black squares
in Fig. 3(a). Then the simulation parameters are changed
to (θ f , h f ), translated to Schlögl parameters according to
Eqs. (4)–(6), shown as the colored symbols in Fig. 3(a). The
color encodes the quench direction: From hi > 0 or hi < 0
to h f > 0 or h f < 0, as shown in the key of Fig. 3(a) and the
legend of Fig. 3(b). A quench is either cis-critical if it does not
take the system across the critical point (yellow and blue), or
trans-critical if takes the system across the critical point (red
and cyan) [30]. Given n̄(t ), we compute the response time τr

according to Eq. (10).
We define the distance from the critical point in terms of the

state variables at the quench destination, θ = θ f and h = h f .
Specifically, the fact that τc scales identically with θβδ as it
does with h [Eqs. (7) and (8)] suggests the Euclidean distance
dc from the critical point

dc = [(θβδ )2 + h2]1/2. (11)

This measure is important when comparing with experiments
(as we do later) because, as opposed to typical condensed
matter experiments, it is difficult in biological experiments to
manipulate only one parameter (θ or h) independently of the
other.
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The dependence of the response time τr on the distance
from the critical point dc is shown in Fig. 3(b). We see
that τr decreases with dc for all quenches, as expected from
critical slowing down. We also see that the quenches split
into two groups according to whether they are cis-critical
or trans-critical. Trans-critical quenches take more time to
respond than cis-critical quenches, as expected because trans-
critical quenches traverse the critical point whereas cis-critical
quenches do not. This difference may be more than just a
multiplicative factor, as the log-log plots appear to show a
different slope, though this could be a result of mixing more
than one timescale [29].

C. Dynamic driving and Kibble-Zurek collapse

While some environmental changes are sudden, many
changes in a biological context are gradual [Fig. 1(b), right].
When a gradual change drives a system through its critical
point, critical slowing down delays the system’s response such
that no matter how gradual the change, the response lags
behind the driving. Although in a biological setting the driving
protocol could take many forms, terms beyond the leading-
order linear term do not change the critical dynamics [30].
This is a major theoretical advantage because it allows us to
specialize to linear driving without loss of biological realism.
Specifically, we focus on linear driving across the critical
point with driving time τd , setting either θ (t ) = θi − (θ f −
θi )t/τd and h = 0, or h(t ) = hi − (h f − hi )t/τd and θ = 0,
where i and f denote the initial and final parameter values,
respectively.

In a traditional equilibrium setting, the dynamics of lagging
trajectories are described in terms of the critical exponents
by the Kibble-Zurek mechanism [12,13]. The idea of the
Kibble-Zurek mechanism is that far from the critical point, the
change in the system’s correlation time due to the driving, over
a correlation time, is small compared to the correlation time
itself, (dτc/dt )τc � τc, and therefore the system responds
adiabatically. However, as the system is driven closer to the
critical point, these two quantities are on the same order,
or dτc/dt ∼ 1, and the system begins to lag. Applying this
condition to Eqs. (7) and (8), and using the above expressions
for θ (t ) and h(t ), one obtains

θ ∼ τ
−1/(νz+1)
d , (12)

h ∼ τ
−βδ/(νz+βδ)
d , (13)

respectively. Because m ∼ (−θ )β or m ∼ h1/δ near criticality
in the mean-field Ising class, we have

m ∼ τ
−β/(νz+1)
d , (14)

m ∼ τ
−β/(νz+βδ)
d , (15)

respectively. Therefore, if the system is driven at different
timescales τd , then the Kibble-Zurek mechanism predicts that
plots of the rescaled variables mτ

β/(νz+1)
d versus θτ

1/(νz+1)
d or

mτ
β/(νz+βδ)
d versus hτ

βδ/(νz+βδ)
d will collapse onto universal

curves.
When testing these predictions using simulations of a spa-

tially extended physical system, the finite size of the system
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FIG. 4. Dynamic driving and Kibble-Zurek collapse. (a) As re-
duced temperature θ is driven over time τd in Schlögl model, order
parameter m lags behind due to critical slowing down. Decreasing
θ causes supercooling (left curves), while increasing θ causes super-
heating (right curves), resulting in hysteresis. (b) Same, for driving h.
(c, d) Rescaled curves collapse as predicted. Each point is computed
via Eq. (4) from the mode n∗ in panel (b), or the modes n(1)

∗ < nc and
n(2)

∗ > nc in panel (a), of 105 simulation trajectories. For finite-size
correction we use nc = 10τd in a and nc = 22τ

4/5
d in panel (b). Time

is in units of 1/k−
1 .

causes a truncation of the autocorrelation time. This truncation
is usually accounted for using a finite-size correction [30]. In
our system, a similar truncation of the autocorrelation time
is caused by the finite number of molecules. Specifically, the
inset of Fig. 2(b) shows that at criticality we have τc ∼ n1/2

c for
large nc, where nc sets the typical number of molecules in the
system. Therefore, we interpret nc as a “system size,” and we
correct for finite-size effects in the following way. Combining
the relation τc ∼ n1/2

c with Eqs. (7) and (8), and Eqs. (12) and
(13), we obtain

nc ∼ τ
2νz/(νz+1)
d , (16)

nc ∼ τ
2νz/(νz+βδ)
d , (17)

for the driving of θ or h, respectively. We choose nc arbitrarily
for a particular driving time τd , and when we choose a new τd ,
we scale nc appropriately according to Eqs. (16) and (17).

This procedure allows us to test the predictions of the
Kibble-Zurek mechanism using simulations of the Schlögl
model. The results are shown in Fig. 4. We see in Fig. 4(a)
that as θ is driven from a positive to a negative value, the
bifurcation response is lagging, occurring at a value less than
the critical value θ = 0 (supercooling). Conversely, when θ

is driven from a negative to a positive value, the conver-
gence occurs at a value greater than θ = 0 (superheating). In
both directions, the lag is larger when the driving is faster,
corresponding to smaller values of τd (from yellow to dark
brown). We see in Fig. 4(b) that similar effects occur for
the driving of h. Yet, we see in Figs. 4(c) and 4(d) that the
rescaled variables collapse onto single, direction-dependent
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curves within large regions near criticality. Note that the
direction dependence (i.e., hysteresis) is preserved as part of
these universal curves, but the lags vanish in the collapse.
This result demonstrates that our nonequilibrium birth-death
model exhibits the Kibble-Zurek collapse predicted for crit-
ical systems. Together with our previous findings, this result
suggests that such a collapse should emerge in biological ex-
periments where environmental parameters (e.g., drug dose)
are dynamically controlled in a gradual manner. More broadly,
by phenomenologically collapsing such experimental curves,
it should be possible to deduce the critical exponents of such
biological systems without fine-tuning them to criticality, but
instead by gradual parameter sweeps.

III. DISCUSSION

We have investigated critical slowing down in a minimal
stochastic model of biochemical feedback. By exploiting
a mapping to Ising-like thermodynamic variables, we have
made quantitative predictions for the response of a system
with feedback to both sudden and gradual environmental
changes. In response to a sudden change (a quench), we have
shown that the system will respond more slowly if the quench
takes it closer to its critical point. In response to more gradual
driving, we have shown that the lagging dynamics of the
system proceed according to the Kibble-Zurek mechanism
for driven critical phenomena. Together, our results elucidate
the consequences of critical slowing down for biochemical
systems with feedback.

Critical slowing down may present a tradeoff in terms of
the speed versus the precision of a response. Specifically, the
inset of Fig. 2(b) demonstrates that the system slows down as
the number of molecules in the system increases. However,
large molecule number is known to decrease intrinsic noise
and thereby increase the precision of a response [31]. This
suggests that cells may face a tradeoff in terms of speed
versus precision when responding to changes that occur near
criticality, as suggested for other biological systems [32,33].

Our work extends the Kibble-Zurek mechanism to a
nonequilibrium biological context. Traditionally, the mecha-
nism has been applied to physical systems from cosmology
[12] and from hard [13,34] or soft [35] condensed matter.
Here, we extend the mechanism to the context of biochemical
networks with feedback, where the system already exists in
a nonequilibrium steady state, and the external protocol takes
the system further out of equilibrium into a driven state. It will
be interesting to see to what other nonequilibrium contexts the
Kibble-Zurek mechanism can be successfully applied [36].

How can our theory be used to analyze experimental data?
As a proof of concept, we perform quench experiments on
immune cells. Specifically, we measure the abundance in T
cells of doubly phosphorylated ERK (ppERK), a protein that
initiates cell proliferation and is implicated in the self/non-
self decision between mounting an immune response or not
[37,38]. We use flow cytometry to measure the ppERK dis-
tribution at various times after the addition of a drug that
inhibits SRC, a key enzyme in the cascade that leads to ERK
phosphorlyation (see Appendix B for experimental methods).
When the dose of the drug is small, the distribution hardly
changes [Fig. 5(d), top]; whereas when the dose is large,
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FIG. 5. Quench response in theory (left) and in immune cell
experimental data (right). (a) Stochastic simulations of Shlögl model
show effect of small and large parameter quenches on distribution.
Time is in units of 1/k−

1 . (b) Initial (black square) and quenched
(colored circles) parameter values in θ and h space in model; nc =
500. Dotted lines show contours of equal dc [Eq. (11)], distance from
critical point (θ = h = 0). (c) Response time τr in model decreases
with dc. (d) Experimental distributions of T cell ppERK fluorescence
intensity measured at times after addition of SRC inhibitor (see
Fig. 7 for all doses). (e) θ and h extracted from initial distribution
(black square) and final distributions (colored circles) for all [SRCi]
doses (color bar). Experimental response time τr decreases with dc.
Error bars: For θ and h, standard error from Savitzky-Golay [39]
filter windows 25 � W � 35 [10]; for dc, propagated in quadra-
ture from panel (e); for τr , standard deviation of Riemann sums
spanning left- to right-endpoint methods to approximate integral
in Eq. (10).

the distribution changes significantly [Fig. 5(d), bottom]. The
responses to all doses are shown in Appendix B.

After the addition of the drug, the cells reach a new steady-
state ppERK distribution [light brown curves in Fig. 5(d)]. The
distribution corresponds to an effective feedback function via
Eq. (3), from which the effective temperature θ and field h are
calculated via Eq. (4) [10] and shown in Fig. 5(e). We see that
larger doses take the cells farther from their initial distribution
(black square), as expected. We also see that larger doses take
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the system farther from the critical point θ = h = 0 (dotted
curves show contours of equal dc).

Motivated by the data in Fig. 5(e), we perform quenches
in our theory using the initial point (black square) and final
points (colored circles) shown in Fig. 5(b). In the language
of Sec. II B, these quenches are cis-critical with hi < 0 and
h f < 0, and the majority of the quench is in the h direction
as expected from previous work with SRC inhibitors [10].
Consistent with the experiments, we see in Fig. 5(a) that
small and large quenches have small and large effects on
the distribution, respectively. The dependence of τr on dc in
the theory is shown in Fig. 5(c), and we see that indeed τr

decreases with dc as expected.
Experimentally, we define the response time to the drug as

in Eq. (10) with n̄ replaced by the mean fluorescence intensity
of ppERK and tmax = 30 min. We calculate the distance from
criticality using Eq. (11) and the experimental values of θ

and h. We see in Fig. 5(f) that the τr decreases with dc,
consistent with the the theory. In Appendix C we verify that
this consistency also holds when using the entropy of the
distribution, which unlike dc is a measure that is independent
of the assumptions of the theory.

The application of our methodology to these experiments
serves as a proof of concept, and questions remain with regard
to the interpretation of the experimental data. For example,
here we do not address the well-known question of the role
of cell-to-cell variability in the broadening of immune cell
distributions [40,41]. Although critical slowing down has been
observed in yeast [5,42], it remains an open question whether
cell-to-cell variability dominates dynamics in mammalian
cells. Indeed, the theory assumes only intrinsic birth-death
reactions and neglects cell-to-cell variability, as well as other
mechanisms such as bursting [43,44] and parameter fluctua-
tions [45,46] that may play an important role. Nonetheless,
similar models that also focus only on intrinsic noise have
successfully described ppERK in T cells in the past [47,48].
Moreover, we expect that intrinsic fluctuations should play
their largest role near the bifurcation point. Finally, we expect
that near the bifurcation point, the essential behavior of the
system should be captured by any model that falls within the
appropriate universality class.

In this and previous work [10] we have explored the
dynamic and static scaling properties of single cells subject to
biochemical feedback. In both works we apply our theory to
immune cell data, but the analysis is general and in principle
can be applied to any single-cell protein abundance data.
Natural extensions include generalizing the theory to cell pop-
ulations or other systems that are not well-mixed such as in-
tracellular compartments. This would allow one to investigate
the spatial consequences of proximity to a bifurcation point,
such as long-range correlations in molecule numbers and the
associated implications for sensing, information transmission,
patterning, or other biological functions.
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APPENDIX A: AUTOCORRELATION TIME

We calculate the autocorrelation time τc [Eq. (9)] for the
Schlögl model in steady state using one of two methods,
the first more efficient for small molecule numbers, and the
second more efficient for large molecule numbers. The first
method is to calculate τc numerically from the master equa-
tion for pn by eigenfunction expansion. The master equation
follows from the reactions in Eq. (5) [10] and can be written
in vector notation as

�̇p = L �p, (A1)

where L is a tridiagonal matrix containing the birth and death
propensities for X . The eigenvectors of L satisfy

L�v j = λ j �v j, (A2)

�u jL = λ j �u j, (A3)

where the eigenvalues obey λ j � 0 with only λ0 vanishing for
the steady state, and �vT

j = �u j because L is not Hermitian [49].
Because Eq. (A1) is linear in �p, the solution is

pn(t ) =
∑

jn′
u jn′ pn′ (0)eλ j tvn j (A4)

for initial condition pn(0). Calling n(0) ≡ m and n(t ) ≡ n, we
write the autocorrelation function [see Eq. (9)] as

κ (t ) = −n̄2 +
∑
mn

pmnmn = −n̄2 +
∑
mn

pn|m pmmn, (A5)

where pm = vm0 is the steady-state distribution, and pn|m is the
dynamic solution at time t assuming the system starts with
m molecules. That is, pn|m is given by Eq. (A4) with initial
condition pn(0) = δnm. Eq. (A5) becomes

κ (t ) = −n̄2 +
∑
mn

mnvm0

∑
j

u jmeλ j tvn j (A6)

=
∑
mn

mnvm0

∞∑
j=1

u jmeλ j tvn j, (A7)

where the second step uses orthonormality,
∑

j vn ju jn′ = δnn′ ,
and probability conservation, u0n = 1, to recognize that the
j = 0 term evaluates to n̄2. Inserting Eq. (A7) into Eq. (9) and
performing the integral (recalling that λ j < 0 for j > 0), we
obtain

τc = 1

σ 2

∑
mn

mnvm0

∞∑
j=1

u jm

(
1

−λ j

)
vn j . (A8)

In matrix notation,

τc = σ−2�nVFU �w, (A9)

where �n is a row vector, �w = mvm0 is a column vector, and
neither the eigenvector matrices V and U nor the diagonal
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FIG. 6. Autocorrelation time computed (a) numerically using
eigenfunction expansion or (b) by simulation using method of batch
means. For sufficient cutoff N or trajectory duration T , respectively,
both methods converge to same value (dashed line). Parameters:
θ = h = 0 and nc = 100. Time is in units of 1/k−

1 . In (b), τb = 1000,
and error bars are standard error from 50 trajectories.

matrix Fj j′ = −δ j j′/λ j contain the j = 0 term. Numerically,
we compute τc via Eq. (A9) using a cutoff N > nc for the
vectors and matrices.

The second method is to calculate τc from stochastic sim-
ulations [26] and the method of batch means [27]. The idea
is to divide a simulation trajectory of length T into batches of
length τb. In the limit T 	 τb 	 τc, the correlation time can

be estimated by [27]

τc = τbσ
2
b

2σ 2
, (A10)

where σ 2
b is the variance of the means of the batches.

In Fig. 6 we verify that the two methods converge to the
same limit for sufficiently large N or T , respectively. We
find that the first method is more efficient until nc ∼ 1000,
when numerically computing the eigenvectors for large N >

nc becomes intractable.

APPENDIX B: EXPERIMENTAL METHODS

The data in Fig. 7 [of which the smallest and largest doses
are reproduced in Fig. 5(d)] were acquired at the same time
and in a similar way as the data published in Ref. [37] and
summarized in Ref. [10]. The difference is that, instead of
only recording the data after steady state was reached, the
time series was sampled by applying a chemical fixative to
stop chemical reactions and preserve all biomolecular states.
Specifically, we administered ice cold formaldehyde in PBS
to each experimental well of a 96 well-v-bottom plate such
that the final working dilution is 2%, and then transferred the
cell-fixative solution to a new 96 well-v-bottom plate on ice.
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FIG. 7. Experimental distributions of T cell ppERK fluorescence intensity measured at times after addition of SRC inhibitor. Times given
in legend in upper right. Dose given in title of each panel; colored square in upper corner of each panel corresponds to color bar in Figs. 5(e),
5(f), and 5(h). Panels with smallest and largest dose are reproduced in Fig. 5(d).
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Cells were kept on ice for 10 min and then precipitated by
centrifugation, resuspended in ice-cold 90% methanol, and
placed in a −20oC freezer until measurements were taken.

APPENDIX C: QUENCH ANALYSIS USING ENTROPY

Although in Fig. 5(f) the response time τr comes directly
from the experimental data, the distance from criticality dc

is calculated from the experimental data using expressions
from the theory [Eqs. (3) and (4)]. This makes the results
in Figs. 5(c) and 5(f) not entirely independent. To confirm
that the agreement between Figs. 5(c) and 5(f) is not a result
of an implicit codependence, we seek a measure that is
related to distance from criticality but that is not dependent
on the theory. We choose the entropy of the distribution
S = −∑

n pn log pn because near criticality, the distribution
is broad and flat, and therefore we expect the entropy to
be large; whereas far from criticality, the distribution has
either one or two narrow peaks, and therefore we expect
the entropy to be small [10]. Indeed, we see in Fig. 8(a)
that in the theory, the response time τr increases with the
entropy S, consistent with the fact that it decreases with
the distance from criticality [Fig. 5(c)]. The same is evi-
dent in the experiments: We see in Fig. 8(b) that low drug

Entropy, S (nats)
3.5 4 4.5 5

R
es

po
ns

e
ti

m
e,

τ r

0

1

2

3

4

5

6

7

(g)

Entropy, S (nats)
3 4 5 6R

es
po

ns
e

ti
m

e,
τ r

(m
in

)

0

5

10

15

20

25

(h)

Theory Experiment

(a) (b)

FIG. 8. Quench analysis using entropy. (a) Response time τr in
model increases with entropy S of the distribution. (b) Experimental
response time τr also increases with S. Fluorescence of one molecule
set to I1 = 10.

doses correspond to long response times and high entropies,
whereas high drug doses correspond to short response times
and low entropies, resulting in an increase of response time τr

with entropy S. Calculating the entropy in Fig. 8(a) requires
a conversion between intensity I and molecule number n, and
we have checked that the results in Fig. 8(b) are qualitatively
unchanged for different choices of this conversion factor over
several orders of magnitude.
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