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Near a critical point, the equilibrium relaxation time of a system diverges and any change of con-
trol/thermodynamic parameters leads to nonequilibrium behavior. The Kibble-Zurek problem is to determine
the dynamical evolution of the system parametrically close to its critical point when the change is parametrically
slow. The nonequilibrium behavior in this limit is controlled entirely by the critical point and the details of
the trajectory of the system in parameter space (the protocol) close to the critical point. Together, they define
a universality class consisting of critical exponents, discussed in the seminal work by Kibble and Zurek, and
scaling functions for physical quantities, which have not been discussed hitherto. In this article, we give an
extended and pedagogical discussion of the universal content in the Kibble-Zurek problem. We formally define
a scaling limit for physical quantities near classical and quantum transitions for different sets of protocols.
We report computations of a few scaling functions in model Gaussian and large-N problems and prove their
universality with respect to protocol choice. We also introduce a protocol in which the critical point is approached
asymptotically at late times with the system marginally out of equilibrium, wherein logarithmic violations to
scaling and anomalous dimensions occur even in the simple Gaussian problem.
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I. INTRODUCTION

The study of critical points and their associated continuum
limits or field theories has been a central and enormously
productive exercise in statistical mechanics and condensed
matter physics. This study began with the problem of equilib-
rium finite-temperature transitions, was then extended to their
dynamics, and thereafter to the interplay between criticality
and finite-size effects.1 This development has since been
replayed in the theory of zero-temperature quantum phase
transitions.2,3 Needless to say, the development of powerful
field-theoretic methods, most notably conformal field theory
in (1 + 1) dimensions4 and most recently the gauge gravity
duality,5 have significantly advanced this line of work. In all
these cases, the field-theoretic approach not only describes
the critical point, but also the regions of the phase diagram
adjacent to it.

A new dimension to the study of the passage through
critical points was introduced by Kibble6 in the context of the
expanding universe, since recast in the language of critical
phenomena by Zurek.7 Their proposal, the “Kibble-Zurek
mechanism,” is a theory of the defects generated in a system
being cooled through a continuous symmetry-breaking phase
transition at a small, but finite rate. The system inevitably
goes out of equilibrium on the approach to the transition
and arrives in the broken-symmetry phase with different
spatial regions realizing different orientations of the broken
symmetry, and topological defects as a result. The mechanism
predicts the scaling of the number of these defects with
quench time7,8 and has been tested in a variety of systems,9–13

although quantitative agreement has been established only
in zero-dimensional annular Josephson junctions14 and in

pattern-forming steady-state transitions,15,16 so there remains
scope for more stringent experimental tests. It has been
recently generalized to the setting of quantum phase transitions
by Dziarmaga,17,18 Polkovnikov,19 and Zurek et al.,20 where
the role of temperature is played by a non-symmetry-breaking
control parameter, and to ramps across multicritical points.21,22

The scaling of other physical quantities such as excess heat
with quench time has also been investigated.23 Polkovnikov
and co-workers have further paid attention to the interplay
between finite system size and parameter velocity.

The general problem posed by the work of Kibble and Zurek
is that of a slow passage through a critical or multicritical
point, which we shall term the Kibble-Zurek (KZ) problem
(often referred to by the oxymoronic term “slow quench”).
This problem is then characterized by a critical point with its
equilibrium physics and a “protocol,” which is a particular path
in the parameter space of the problem that touches the critical
point. In the limit of asymptotically slow motion in parameter
space, we expect that the physics is dominated by the critical
point and hence is, in an appropriate sense, universal. An
important task of theory is then to isolate this universal content
and compute it. We should note that the study of universality in
the KZ problem, especially in the quantum setting, is a part of a
wider current study of nonequilibrium quantum dynamics; for
broader perspective, see the recent discussion of Polkovnikov
et al..24

In previous studies of critical phenomena, two ideas have
proven extremely useful. The first is the idea of the scaling limit
in which various quantities of interest, such as thermodynamic
densities and correlation functions, are postulated to obey
certain homogeneity relations. This set of scaling functions
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along with the critical exponents capture the full universal
content associated with a given critical point. The second is
the renormalization group, which provides an understanding
of the origin of this universality and a full computation of its
content.

In this paper, we will make progress on the first front: we
will formulate a scaling limit for the KZ problem and report
model computations of the resulting scaling functions for a
few classical and quantum problems. In appropriate limits,
these scaling functions will reduce to those in the equilibrium
and the coarsening problems. Except for recent work by Deng
et al.,25 Biroli et al.,26 and De-Grandi et al.27 discussing scaling
functions in specific cases, the need for defining full scaling
functions has been largely overlooked in the literature. Our
contribution is to formalize the idea as a scaling limit for all
physical quantities for any pairing of a critical point and a
protocol.

The second part of the program, beyond our ambition at
present, would be the construction of a renormalization group
flow. Such a program has been fruitfully pursued in sudden
quench studies in classical models with stochastic dynamics
(see Ref. 28 and references therein). We offer two modest
steps in that direction here. First, in the classical context, we
formulate the path integral previously written only for sudden
quenches to the KZ problem. This is, in principle, amenable
to analysis by standard equilibrium renormalization group
techniques. Second, we will prove universality with respect
to protocol choice for some model classical and quantum
problems. Specifically, we will show that the expectation that
only the behavior of the protocols in the vicinity of the critical
points is important is, in fact, correct.

In the course of this paper, we will offer a tripartite
classification of possible protocols based on their “topology,”
i.e., whether they cross, turn around at, or end at the critical
point. The scaling of quantities such as the defect density
and the excess heat with quench time has been previously
generalized23,29 to arbitrary positive power-law behavior of
the protocol on time near the critical point, that is, the first
two kinds of protocols in our classification. Our contribution
is the definition of a third class of power-law protocols that
asymptotically end at the critical point and the identification
of an interesting member, the marginal end critical protocol,
that generates a one-parameter family of nonequilibrium
deformations of the equilibrium critical state worthy of further
study.

We turn now to the organization of this paper. We begin, in
Sec. II, by defining the protocols of interest and introducing
the well-known KZ time and length. In Sec. III, we lay out the
scaling formalism for the KZ problem: the definition of the
KZ scaling limit and the resulting scaling functions. Here,
we also discuss how the KZ scaling functions universally
interpolate between the early equilibrium physics and the
late-time thermalization/coarsening physics. In Sec. IV, we
use the O(N ) vector model endowed with Model A dynamics
as our classical model system and compute scaling functions
for it in the Gaussian and large-N approximations. We also
give an explicit proof of protocol universality for this problem.
In Sec. V, we turn to the quantum O(N ) model in the
Gaussian approximation and compute various quantities of
interest there. We conclude with some remarks in Sec. VI.

We note that a recent paper by Kolodrubetz et al. reports
analogous results for the transverse-field Ising model in (1 + 1)
dimensions.30 This work complements our own results on
the quantum Ising universality class above the upper critical
dimension (3 + 1) where the critical theory is Gaussian.31 We
comment on the one case untreated in Ref. 30 later in the
paper. The present authors will also report computations of
scaling forms in an interacting quantum field theory using the
tools provided by the Anti-de-Sitter/Conformal field theory
(AdS/CFT) correspondence elsewhere.32

II. CLASSIFICATION OF PROTOCOLS AND THE KZ
TIME AND LENGTH SCALES

Consider a multicritical point in d spatial dimensions.
Let {Oi} denote the set of relevant operators that couple
to conjugate fields {hi} and have scaling dimensions {!i}.
At the critical point, we set ⟨Oi⟩eq = 0. The set of scaling
dimensions {!i} and a host of scaling functions constitute
the static universal equilibrium content of this critical point.
Along with the dynamical exponent z obtained from the time
dynamics, they determine the universality class of the critical
point. Let δ parametrize a path in the space of conjugate fields
{hi} such that δ is zero at the critical point. For every such
path, define the correlation length exponent ν to be 1/(d − !),
where ! is the scaling dimension of the most relevant operator
that has a projection along the path near δ = 0. Along the path,
the correlation length then diverges as δ−ν close to the critical
point.

A useful example to keep in mind, particularly for the
next section, is the ferromagnetic critical point. The relevant
operators are the scalar energy operator and the vector
magnetization, coupling to the conjugate fields of temperature
and magnetic field, respectively. Unless mentioned otherwise,
all length/time scales are dimensionless and are measured in
units of some microscopic length/time. We also set h̄ and kB

to 1.

A. Protocols in δ

Consider a system prepared in equilibrium at t = −∞ at
some fixed distance δ− > 0 away from the critical coupling
δ = 0 being evolved in time along the path δ(t) in conjugate
field space. For simplicity, we restrict ourselves to paths with
a unique tangent most relevant operator near δ = 0. The KZ
dynamics refines the classification of critical points discussed
above using two pieces of data. The first is the symmetry
of the path. If the most relevant operator along the path
respects all the symmetries of the critical theory, the path
is non-symmetry breaking, or else it is symmetry breaking.
The second is the leading-order behavior of δ(t) near the
critical point (strictly speaking, the critical coupling) which
we classify in the following (see Fig. 1):

(i) Trans-critical protocols (TCPs): These protocols take
the system across the critical point. They smoothly interpolate
δ between δ− > 0 as t → −∞ and δ+ < 0 as t → ∞, crossing
the critical point at t = 0. An example of a TCP is

δ(t ; τQ) = −δ0 tanh
t

τQ

. (1)
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FIG. 1. (Color online) From left to right, examples of transcritical (TCP), cis-critical (CCP), and end-critical (ECP) protocols. The critical
point is at t = 0. The leading-order expansion of δ is valid in the shaded region.

We will shortly show that the dynamic scaling functions are
universal with respect to the behavior of the protocol near
t = 0. In anticipation of this result, we classify the entire family
of analytic TCPs by their leading-order behavior in a time scale
τQ near t = 0 as

δ(t ; τQ) =

⎧
⎨

⎩

δ−, t → −∞
δ0

(−t
τq

)a
, t → 0

δ+, t → ∞
(2)

with a odd. a = 1 is the linear protocol, a = 3 the cubic, and
so on.

(ii) Cis-critical protocols (CCPs): These protocols keep the
system in a single phase and touch the critical point at t = 0.
They smoothly interpolate δ between δ− as t → −∞ and δ+ >
0 as t → ∞ through the critical point at t = 0. An example of
a CCP is

δ(t ; τQ) = δ0 tanh2 t

τQ

. (3)

Equation (2) with a even classifies CCPs. a = 2 is the quadratic
protocol, a = 4 the quartic, and so on.
(iii) End-critical protocols (ECPs): End-critical protocols

(ECPs) keep the system in a single phase while asymptotically
approaching the critical point. They smoothly interpolate
between δ− as t → −∞ and 0 as t → ∞. The asymptotic
approach to the critical point may be with or without a time
scale. Here, we restrict ourselves to the family of scale-free
protocols

δ(t) =
{

δ−, t → −∞
δ0

(
t

τQ

)a = δ0
( τQ

t

)|a|
, t ≫ τQ

(4)

where a < 0 and τQ is the time scale over which the protocol
behavior smoothly changes from being a constant to a power
law. Unlike in the above two cases, a is not required to be
integer valued.

B. KZ length and time

A system evolving from t = −∞ by a TCP, CCP, or an
ECP with large |a| must fall out of equilibrium near the
critical point due to critical slowing down. This is signaled
by a diverging relaxation time ξt .33 The time at which the
system falls out of equilibrium is defined to be the KZ
time tQ. The KZ time defines a KZ length lQ ∼ t

1/z
Q . lQ

manifests in dynamic correlation functions as a crossover
scale between equilibrium and nonequilibrium correlations.

More intuitively,6,8 in an ordering transition, order is unable
to form on scales larger than lQ due to the finite quench rate,
and domains of broken-symmetry phase of size lQ persist in
the ordered phase. We now separately consider the cases of
TCP/CCP and ECP.

TCPs/CCPs. The scaling of the KZ length and time with
τQ follows essentially from considerations of Refs. 20 and
29, which we recapitulate here. A purely quantum version
can also be formulated using Landau-Zener arguments and
perturbation theory.19,20 We define ξ (t ; τQ) and ξt (t ; τQ) to be
the instantaneous correlation length and time if the system
were in equilibrium at δ(t ; τQ). The crucial quantities that
determine tQ are the change in the correlation time over a
correlation time ξ̇tξt and ξt itself. When ξ̇tξt ≪ ξt or ξ̇t ≪ 1,
ξt is changing slowly enough for the system evolution to be
adiabatic. This is the case for t < −τQ. As ξ̇t diverges at the
critical point, there must come a time −tQ > −τQ when it is of
order one:

ξ̇t (tQ; τQ) = 1 ⇒ tQ ≡
(

τQ

δ
1/a
0

) aνz
aνz+1

. (5)

ECPs. The asymptotic behavior of ξ̇t categorizes the ECPs
into three. |ac| ≡ 1/(νz) as follows:

(a) Nonadiabatic: When |a| > |ac|, ξ̇t diverges at the critical
point. The system falls out of equilibrium at tQ given by Eq.
(5) where a is now negative.

(b) Adiabatic: When |a| < |ac|, ξ̇t is zero at the critical
point. When τQ is large, the evolution is adiabatic for all times.

(c) Marginal: When |a| = |ac|, ξ̇t is independent of t at the
critical point and the only length scale in the problem is t1/z.
The system is marginally out of equilibrium on this scale in a
sense that will become clear soon.

As we are interested in universal behavior out of equilib-
rium, |a| ! |ac| henceforth.

III. KZ SCALING LIMIT

The introduction of tQ and lQ is reminiscent of the
introduction of finite-size cutoffs in the theory of equilibrium
critical behavior, and we are led to analogs of the finite-size
scaling limit and finite-size scaling functions. We define the
KZ scaling limit to be the limit τQ → ∞ when time and length
scales are measured in units of the diverging KZ scales, tQ
and lQ. δ(t ; τQ) → 0 in this limit, and the system is arbitrarily
close to the critical point, evolving nonadiabatically for all t/tQ
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(−tQ1,−δ(tQ1))

(−tQ2, δ(−tQ2))

FIG. 2. (Color online) Left: δ as a function of t close to t = 0
with KZ times shown for a slow (2, dashed line) and fast (1, solid
line) quench. In the slower quench, the system falls out of equilibrium
earlier (|tQ2| > |tQ1|), but at a smaller distance from the critical
point [δ(−tQ2) < δ(−tQ1)]. Right: The correlation length of a system
quenched at a finite rate (solid line) vs ξ (t ; τQ) (dashed line). KZ split
dynamics into (i) adiabatic, (ii) sudden, and (iii) post-quench (here
coarsening) regimes. The KZ scaling limit describes (ii) with (i) and
(iii) as asymptotes.

[the shaded region in Fig. 2(b)]. The marginal ECP is special
and we discuss it separately at the end of this section.

We now turn to the definition of the scaling functions
that arise in the KZ scaling limit. We discuss the scaling
functions of various physical quantities and their asymptotic
forms in specific cases. Any readers new to scaling theory are
encouraged to arm themselves with the Model A example in the
Gaussian limit discussed in Sec. IV and interpret the definitions
below in that context.1 We initially consider classical critical
points and discuss asymptotic forms when the transition is
ordering. We then comment on the special features of quantum
critical points.

Our notation is to denote the absolute value of any vector
k by k, and to use x̄ and t̄ , respectively, to refer to the scaled
length and time x/lQ and t/tQ. We reserve calligraphic lettering
for scaling functions.

A. TCPs and CCPs

1. Scaling forms of correlation functions

Consider the scalar operator O with scaling dimension !.
We assume that the theory has translational and rotational
invariance.34 The KZ scaling forms for the one- and two-point
connected correlation functions are

⟨O(x,t)⟩τQ
≡ GO(t ; τQ) ∼ 1

l!
Q

GO

(
t

tQ

)
,

⟨O(x,t)O(x′,t ′)⟩τQ
≡ GOO(|x − x′|,t,t ′; τQ)

∼ 1
l2!
Q

GOO

( |x − x′|
lQ

,
t

tQ
,
t ′

tQ

)
. (6)

When we use “∼” to indicate a scaling form of a correlation,
as in Eq. (6), we have a precise limiting statement in mind.
For example, in the case of the two-point connected correlator,
what we mean is

lim
τQ→∗∞

l2!
Q

GOO(x,t,t ′; τQ) = GOO

(
x

lQ
,
t

tQ
,
t ′

tQ

)
, (7)

where τQ →∗ ∞ means the limit where τQ → ∞ with x
lQ

, t
tQ

,

and t ′

tQ
held fixed.

The scaling forms of all higher-order cumulants and cross
correlators with other relevant operators are straightforward
extensions of the form in Eq. (6). Note that GO can be
identically zero. This is the case, for instance, in a zero-field
temperature quench through the ferromagnetic critical point
when O is the spin operator. The finite ramp rate prevents
order from forming on scales longer than the KZ length, and
⟨O⟩τQ

, the average magnetization, remains zero at all times.

2. Asymptotic form near equilibrium

By construction of the protocol, we should recover equilib-
rium scaling forms in certain limits as t̄ → ±∞. However, the
precise limits are subtle and we derive them in the following.
Recall that the equilibrium scaling limit is the limit of δ → 0
holding x/ξ and (t − t ′)/ξ z fixed, wherein the two-point
correlator has the scaling form

⟨O(x,t)O(0,t ′)⟩eq
δ ∼ ξ−2!Geq

OO

(
x

ξ
,
t − t ′

ξ z

)
. (8)

The “∼” symbol here is distinct from that in the previous
section.

We consider the limit in which the KZ scaling form [Eq. (7)]
reduces to the equilibrium scaling form [Eq. (8)]. First, we
observe that the relation

x/lQ

x/ξ (t ; τQ)
= ξ (t ; τQ)

lQ
=

∣∣∣∣
t

tQ

∣∣∣∣
−aν

(9)

implies that x/ξ is fixed whenever x̄ and t̄ are held fixed.
Similarly, t/ξ z and t ′/ξ z are also fixed by t̄ and t̄ ′. Thus, an
alternative to the KZ scaling form (7) involving the same two
arguments as the equilibrium scaling form may be given as

lim
τQ→∗∞

ξ 2!GOO(x,t,t ′; τQ) = G(2)
OO

(
x

ξ
,
t − t ′

ξ z
,
t + t ′

tQ

)
.

(10)

When |t | ≫ tQ, the system is in instantaneous equilibrium
on length and time scales ξ and ξt , respectively. This is the
limit in which G(2)

OO must reduce to Geq
OO . Thus, in the limit

(t̄ + t̄ ′) → ±∞ holding x/ξ and (t − t ′)/ξ z fixed,

G(2)
OO

(
x

ξ
,
t − t ′

ξ z
,
t + t ′

tQ

)
∼ Geq

OO

(
x

ξ
,
t − t ′

ξ z

)
. (11)

For the original KZ scaling form (7), this translates to the
requirement

GOO(x̄,t̄ ,t̄ ′) ∼ t̄2aν! Geq
OO[x̄ t̄νa,(t̄ − t̄ ′) t̄ zaν] (12)

in the same limit. As expected, ξ (t ; τQ)/ξ (t ′; τQ) → 1 so that
there is a single diverging length in the equilibrium system.
Furthermore, time-translation invariance is recovered.

In the example of a temperature quench through a ferro-
magnetic critical point, the equilibrium equal-time connected
spin-spin correlation function decays exponentially on a length
scale ξ on either side of the critical point, consequently,
Eq. (12), when t̄ = t̄ ′ must asymptote to

GOO(x̄,t̄ ,t̄) ∼ t̄2aν! exp(−x̄ t̄νa).
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3. Asymptotic form for coarsening dynamics

It is generally believed35 that a system quenched to an
ordered phase with multiple vacua undergoes coarsening,
whereby each local broken-symmetry region grows in time
and the system is asymptotically statistically self-similar on
a characteristic length scale lco(t) ≫ ξ . Put another way, the
two-point function heals to its equilibrium value on the scale
ξ within each “domain,” and is exponentially suppressed
between domains, each of growing length lco ≫ ξ . In the
late-time regime, dynamical scaling is expected to hold when
there are no growing scales competing with lco. For example,
as t,t ′ → ∞,

⟨O(x,t)O(0,t ′)⟩δ ∼ ξ−2!Gco
OO

(
x

lco(t)
,

x

lco(t ′)

)
,

(13)
where lco(t) ≡ tθ = t

−aν+ aνz+1
zd .

zd is a dynamic exponent specific to coarsening. The coarsen-
ing scaling forms in various models are reviewed in Ref. 36.

When present in the KZ problem, we expect coarsening
physics to emerge deep in the ordered phase, i.e., as t̄ ,t̄ ′ → ∞,
on the length scales lco(t),lco(t ′). Proceeding as in the previous
section, we conclude that as t̄ ,t̄ ′ → ∞ holding x/lco(t) and
x/lco(t ′) fixed, the two-point function must have the limiting
form

GOO(x̄,t̄ ,t̄ ′) ∼ t̄2aν!Gco
OO

(
x̄

t̄θ
,

x̄

t̄ ′
θ

)
.

Note that the limiting equilibrium form requires holding x/ξ (t)
fixed and that lco(t)/ξ (t) diverges as t̄ → ∞.

In the simplest case of Model A dynamics for spins with
N components, zd = z = 2 and lco(t) ∼

√
t in the infinite-N

limit. Although this phenomenology holds for systems with
and without topological defects, the specific form of the equal-
time spin-spin correlation function depends on the presence of
topological defects.36

4. Scaling form of the nonequilibrium correlation length

The nonequilibrium correlation length ξne is defined to
be the inverse of the decay constant on the longest length
scales of the two-point equal-time correlator in real space. In
equilibrium, this length is the crossover scale in correlation
functions between fluctuations dominated by one fixed point
and another. A particularly simple definition of ξne is

ξne(t ; τQ) =

√∫
dxd x2GOO(x,t,t ; τQ)∫
dxd GOO(x,t,t ; τQ)

, (14)

and is useful when GOO is always positive. A more general
definition is through the smallest imaginary part of the poles of
GOO(k,t,t ; τQ) in k space; we will elaborate on this when the
necessity arises. Biroli and coauthors26 recently discussed the
KZ scaling form of ξne in non-symmetry-breaking TCPs. They
observed that ξne must asymptote to the equilibrium correlation
length ξ (t ; τQ), as t̄ → −∞; that it must scale according to
the critical coarsening form t

1/z
Q , when |t̄ | ∼ O(1); and that it

must asymptote to the coarsening length lco as t̄ → ∞. Their
proposed scaling form can be derived from that of GOO and

can be rewritten as

ξne(t ; τQ) ∼ lQLne

(
t

tQ

)
. (15)

The asymptotic behavior of ξne for t̂ → ±∞ formally trans-
lates to the limits

Lne(x) ∼
{

|x|−aν, x → −∞
|x|θ , x → ∞.

(16)

Absent coarsening physics, the right asymptote reproduces the
instantaneous correlation length.

5. Scaling form of the number of defects

An intuitively appealing picture of the lack of order on
length scales greater than the KZ length is through topolog-
ically protected point defects of characteristic separation lQ,
and/or defects of dimension p with characteristic separation lQ
in any hyperplane of codimension p. This picture is really only
meaningful if the separation between defects is much larger
than the equilibrium correlation length, a constraint met only
in the coarsening regime t ≫ tQ. In the coarsening regime,
the density of a defect of dimension p in the hyperplane
of codimension p should scale as 1/lco(t ; τQ)d−p. At fixed
positive t̄ , this reproduces the celebrated scaling of the defect
density with τQ,

Density of defects ∼
(

1
lQ

)d−p

∼ τ
−aν(d−p)

aνz+1
Q . (17)

The above scaling with τQ has been verified in experiments
in zero-dimensional annular Josephson junctions14 and in
nonlinear optical and hydrodynamical systems undergoing
steady-state transitions.15,16 It is worth noting that the fre-
quently cited experiments37,38 in liquid-crystal systems do
not test this critical scaling, but instead test the coarsening
scaling forms. Although we have presented the above as a
natural scaling ansatz, it may be derivable from the known
scaling of correlation functions, for example, by the methods
of Halperin-Liu-Mazenko for classical transitions.39,40

6. Scaling forms of thermodynamic analogs

The dynamics of classical systems is typically modeled phe-
nomenologically by stochastic differential equations, possibly
with conservation laws.41 It is often useful to reformulate the
stochastic dynamics in d dimensions in terms of a path integral
in (d + 1).42,43 For Gaussian noise, the generating functional
of correlation functions of the fundamental field O(x,t) is

Z[J ] =
∫

DO(x,t) exp
(

−
∫

ddx dt [L + J (x,t)O(x,t)]
)

.

Here, J is the source for O, and L is a local Lagrangian
density in which parameters of the protocol (like τQ) appear as
couplings. When hyperscaling is obeyed, all KZ scaling forms
follow from the scaling of the associated free energy.

In this formulation, it is natural to define a time-dependent
free-energy density. We divide the (d + 1)-dimensional space-
time into a stack of spatial slices with volume Ld and temporal
length !t . Neglecting boundary effects, we compute the
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free-energy density of a slice:

f (t ; τQ) = lim
L → ∞
!t → 0

− ln(Z)
Ld!t

, (18)

where

Z(t) =
∫

DO exp
(

−
∫

x∈[−L,L]d
ddx

∫ t+!t

t

dt L
)

.

For time independent δ, f is also time independent, and its
leading nonanalytic dependence on δ is fna ∼ δνd . When δ
varies with time, we conjecture a scaling form for fna(t ; τQ) in
the KZ limit:

fna(t ; τQ) ∼ 1
ld
Q

F
(

t

tQ

)
. (19)

When t/tQ ≪ −1, the system is asymptotically in equilibrium.
Thus,

F
(

t

tQ

)
∼

(
t

tQ

)aνd

when t/tQ ≪ −1. (20)

This is also the expected asymptotic form of F if the system
does not coarsen for t/tQ ≫ 1.

B. ECPs

The definition of the scaling limit, the KZ scaling forms of
various observables, and their asymptotic behavior when the
system is subjected to a nonadiabatic ECP closely follow the
TCP discussion. Qualitatively, note the following:

(i) When t̄ → 0, the system evolution is adiabatic and
equilibrium scaling forms are recovered on the scale of the
instantaneous correlation length and time.

(ii) The long-time behavior of a sudden quench to the critical
point is recovered in the limit t̄ → ∞. On a growing length
scale lco(t) = t1/z, the system appears self-similar and satisfies
dynamical scaling [Eq. (13)]. On length scales x much smaller
than lco(t), correlations have relaxed to their critical form,
while for x ≫ lco(t), the system coarsens.
(iii) Scaled times near 1 probe a universal early-time regime

of a sudden quench, i.e., t ≪ ξt,0 where ξt,0 is the relaxation
time before the quench. In the sudden quench, this regime is
tied to boundary criticality.44

When |a|νz = 1 in Eq. (4), ξ̇t is a constant for t > τQ. By
suitably redefining constants, Eq. (4) can be rewritten as

δ(t) =
{

δ−, t → −∞
(

θ
t

)1/νz
, t ≫ τQ .

(21)

The key distinction between the marginal ECP and all the other
protocols is that there is only one growing length scale t1/z

everywhere in the power-law regime. At late times, we expect
the system to appear self-similar on this scale. This leads us to
the scaling limit x,t → ∞ at fixed θ holding x/t1/z fixed:

GO(t) ∼ 1
t!/z

,

(22)

GOO(x,t,t ′) ∼ 1
t2!/z

GOO

(
x

t1/z
,
t

t ′

)
.

We emphasize that the scaling functions above do not connect
to the adiabatic limit. Unfortunately, this also implies that
they necessarily contain some nonuniversal data. The source
of this nonuniversality will be clearer in Sec. V F, where we
are nevertheless able to identify interesting nonequilibrium
behavior.

C. Quantum systems

We comment in the following on the major differences that
arise in the treatment of quantum systems.

(i) The scaling of the correlation functions proceeds as
before. However, the analogs of thermodynamic quantities of
interest for protocols that begin with the system at T = 0
are now the excitation energy density in excess of the energy
density in the adiabatic ground state, or “heat” density,23,45

and the entropy density for which plausible definitions can be
constructed from the diagonal entropy46,47 or the entanglement
entropy of a macroscopic subregion. These are, respectively,
expected to exhibit the scaling forms

q(t ; τQ) ∼ 1

ld+z
Q

Q
(

t

tQ

)
, (23)

s(t ; τQ) ∼ 1
ld
Q

S
(

t

tQ

)
. (24)

For an isolated quantum system, by construction of the
protocol, s and q are constant as t → −∞. As t̄ → ∞, s
and q also tend to a constant provided the system thermalizes
to the Gibbs or the generalized Gibbs ensemble.

(ii) For protocols that begin with the system in equilibrium
at T > 0, a new dimensionless parameter kBT /(h̄/tQ) now
enters the quantum problem. Along with the quantities held
fixed as the quench time is taken to be arbitrarily large in Sec.
III A1, we also hold T tQ fixed. For example, the scaling form
for the two-point unequal time correlation function is now

⟨O(0,t)O(x′,t ′)⟩τQ,T ∼ 1
l2!
Q

GOO

(
x ′

lQ
,
t

tQ
,
t ′

tQ
,T tQ

)
.

The definition of the entropy goes through as before, but the
excitation energy density is now measured with respect to the
energy density that would be obtained in a strictly adiabatic
evolution.48

(iii) Integrable quantum systems allow the existence of
sharply defined quasiparticle excitations; their density resolved
by momentum can serve as a uniquely quantum observable
for CCPs and ECPs. When the vacuum is not unique, it is not
straightforward to define quasiparticles and separate them from
domain walls and other topological defects. Currently, we are
not aware of an integrable system above one dimension where
this question can be properly posed49 (in one dimension, there
is no real distinction between quasiparticles and domain walls).
Note that the definition of the thermodynamic quantities of
heat and entropy do not rely on integrability. For instance, in
a cyclic process such as a CCP, q(t ; τQ) when t ≫ tQ is the
difference of the system’s energy density between symmetric
time points.

D. Comments

We conclude this section with four comments.
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(i) The Kibble-Zurek picture was initially proposed for a
linear ramp through a thermal transition. The time dynamics
was decoupled into three regions: the adiabatic regime for t <
−tQ, the diabatic or sudden or impulse region from −tQ to tQ
when the system is frozen, and the post-quench regime for t >
tQ when the system is unfrozen and evolves through domain
growth,8 defect-antidefect annihilation, etc. Recently,26 this
picture was extended to account for evolution in the impulse
regime using critical coarsening results. The KZ scaling forms
introduced in this article also probe dynamics in the impulse
regime with the adiabatic and the post-quench regimes acting
as asymptotic limits.

(ii) A finite system dimension L can be readily accom-
modated in our scaling forms in the combination L/lQ. The
results obtained through adiabatic perturbation theory19,50 can
therefore be fitted within this framework.
(iii) We expect that the KZ scaling forms are unchanged by

the inclusion of interaction terms in the dynamics that are
irrelevant to the critical theory.51 In the classical setting, the
reformulation of the dynamical problem in d dimensions as
an inhomogeneous statistical problem in (d + 1) dimensions
allows us to establish this by standard power-counting argu-
ments. The quantum case is more subtle and needs to be treated
case by case.

(iv) As the free Gaussian theory is the stable critical point in
d > 4, the KZ scaling forms that we calculate in the following
in that theory are universal for d > 4. In the classical setting,
interaction terms in the Gaussian theory can be treated as
perturbations to the action defined in Sec. III A6 and will
modify dynamics only on time scales tint that are parametrically
larger than tQ. In the quantum case, these terms induce
scattering between the free quasiparticles of the unperturbed
theory on time scales tint that are parametrically larger than tQ.
In either case, tint/tQ → ∞ in the scaling limit, and the effects
of these terms drop out.

IV. CLASSICAL SYSTEMS WITH MODEL A DYNAMICS

We illustrate the universality of the KZ scaling limit and
explicitly compute scaling functions of a vector operator φ⃗
in the simplest setting: Model A (Ref. 41) dynamics with
a Landau-Ginzburg-Wilson (LGW) free energy. Model A
dynamics is dissipative and obeys no conservation laws. Let
φ⃗ be an N component vector field in d = 3 dimensions. The
dimensionless LGW free energy and the equation of motion
are, respectively,

F =
∫

d3x

[
1
2

(
|∇φ⃗|2 + r0|φ⃗|2 + u

2N
|φ⃗|4

)
−

√
Nhαφα

]
,

∂φα

∂t
= − ∂F

∂φα

+ ζα. (25)

x and t are dimensionless and measured in units of the inverse
cutoff +−1 and +−z, respectively. ζα is a zero-mean spatially
uncorrelated white-noise stochastic variable for every α. The
variance of ζα is chosen to be 2 so that the long-time limit of the
structure factor computed from the equation of motion when
F is time independent is equal to the equilibrium structure
factor:

⟨ζα(x,t)ζβ(x′,t ′)⟩ = 2δαβδ3(x − x′)δ(t − t ′) . (26)

A. Gaussian limit

In this limit, we drop the φ4 term in F . The critical point
is at r0 = 0,hα = 0, i.e., at the origin in the (r0,h

α) parameter
space. Let us restrict ourselves to paths in this space that lie
along the axes and include the origin. The equilibrium theory is
sensible only at the origin and when r0 > 0. We can therefore
study CCPs and ECPs along the non-negative r0 axis (δ = r0).
Luckily, we can also study TCPs along the same axis as
the time-dependent fields are finite even when r0 < 0. This
physically uninteresting protocol is pedagogically useful. The
critical exponents for all such paths are ν = 1/2, z = 2. In the
remainder of the discussion, δ = r0 and hα,u = 0.

Equation (25) is linear in φ⃗ and hence diagonal in Fourier
space. It can be explicitly solved for any protocol δ(t ; τQ) =
r0(t ; τQ) and a fixed noise realization:

φ(k,t) =
∫ t

−∞
dt ′ e−

∫ t

t ′ dt ′′[k2+r0(t ′′;τQ)] ζ (k,t ′) . (27)

We have dropped the component label of φ⃗ for brevity.
Memory of the initial condition at t = −∞ is lost on the time
scale 1/r0(−∞; τQ) and is therefore absent in the solution
above. The equal-time structure factor for each component,
defined as ⟨φ(k,t)φ(k′,t)⟩ = (2π )3δ3(k + k′)Gφφ(k,t ; τQ), is

Gφφ(k,t ; τQ) = 2
∫ t

−∞
dt ′ e−2

∫ t

t ′ dt ′′[k2+r0(t ′′;τQ)] . (28)

1. Scaling limit for tanh TCP

The universality of the scaling limit with respect to details
of the the protocol is already apparent when we consider the
simple TCP r0(t ; τQ) = − tanh(t/τQ). This is an example of
a protocol that is linear near the critical point, i.e., a = 1 in
Eq. (2). Consequently, the KZ time and length scales are

tQ = √
τQ, lQ = τ 1/4

Q
.

Rewriting Eq. (28) in units k̄ = klQ and t̄ = t/tQ,

Gφφ(k,t ; τQ) = 2tQ

∫ t̄

−∞
dt̄ ′e−2

∫ t̄

t̄ ′ dt̄ ′′[k̄2−tQ tanh(t̄ ′′/tQ)].

As τQ → ∞, tQ tanh(t̄ ′′/tQ) → t̄ ′′ and the KZ scaling form of
the two-point equal-time correlation function is

Gφφ(k,t ; τQ) ∼ l2
Q
Gφφ(k̄,t̄)

∼ l2
Q

∫ t̄

−∞
2 dt̄ ′e−2

∫ t̄

t̄ ′ dt̄ ′′(k̄2−t̄ ′′). (29)

Observe that the scaling function only depends on the leading
behavior of the protocol near the critical point. For all protocols
such that r0(t ; τQ) ∼ −t/τQ in the vicinity of zero time, the
scaling form of the structure factor is the expression that we
have just derived.

2. Scaling functions for all TCPs and CCPs

Wick’s theorem informs us that all higher-order cumulants
of φ only depend on Gφφ . The details of the protocol enter the
expression of Gφφ only in the combination tQr0(t ; τQ). In the
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FIG. 3. (Color online) Gφφ(k̄,t̄) vs k̄ at fixed time slices for the
linear TCP. The blue, red, and green solid lines are, respectively, at
t̄ = 0.2, 0, and −0.2. The green dashed line is the correlator if the
system were in equilibrium at t̄ = −0.2. Inset: The scaling form of
the nonequilibrium correlation length vs t̄ in solid. The dashed line
is the instantaneous correlation length in units of lQ, ξ (t ; τQ)/lQ.

scaling limit, for any a in Eq. (2), it is easily seen that

tQr0(t ; τQ) ∼
(−t

tQ

)a

. (30)

The scaling function of the equal-time correlation function for
any protocol with the near-zero behavior in Eq. (2) is therefore

Gφφ(k̄,t̄) = 2
∫ t̄

−∞
dt̄ ′ e−2

∫ t̄

t̄ ′ dt̄ ′′[k̄2+(−t̄ ′′)a ] .

As seen from Fig. 3 for the linear TCP, Gφφ and Lne match
equilibrium forms as t̄ → −∞ and k̄ ≫ 1:

l2
Q
Gφφ(k̄,t̄) ∼ ξ 2 Geq

φφ[kξ (t)] ≡ ξ (t)2

k2ξ (t)2 + 1
,

(31)
ξne ∼ lQLne ≡ 1

(−t)1/2
.

Observe that Gφφ(0,0) is finite, indicating the suppression
of order on length scales longer than lQ. As t̄ → ∞, the
nonequilibrium correlation length grows without bound for
TCPs due to the inverted potential. For CCPs, on the other
hand, all scaling forms asymptote to the equilibrium forms at
large positive times.

In the Appendix, we compute the partition function in
(3 + 1) dimensions and demonstrate the validity of the scaling
hypothesis for the free-energy density fna.

3. Scaling functions for the ECPs

The scaling functions of the nonadiabatic ECPs are identical
to those of the TCPs/CCPs when a < −1/νz. Their asymptotic
behavior may also be verified to be in agreement with
Sec. III B. The more interesting case is the marginal ECP
r0(t) = θ/t . Independent of the early-time regularization on
the time scale τQ, Gφφ has the asymptotic form in Eq. (22):

Gφφ(k,t) ∼ t Gφφ(k
√

t),

Gφφ(x) ≡ 4e−2x2

x4θ+2

∫ x

0
dy e2y2

y4θ+1.

As promised, Gφφ(x) is distinct from Geq
φφ(x) and the nonequi-

librium correlation length is a multiple of the instantaneous

one ξ (t) =
√

t/θ at late times. The system exhibits critical
coarsening and relaxes to the critical point as t → ∞.

B. Large-N limit

In the infinite-N limit, the LGW theory is exactly solvable
in terms of one- and two-point correlators. All higher-order
correlators follow by the application of Wick’s theorem.
The one- and two-point correlators are known exactly in
equilibrium and can be reduced to quadrature with Model A
dynamics. The theory in d = 3 that we discuss here exhibits
nontrivial critical behavior and affords us a probe of symmetry-
breaking paths and coarsening physics.

Assume in Eq. (25) that hi ̸= 0 for i = 1 and 0 otherwise.
This specifies all one-point correlators for i > 1 to be zero.
The two-point correlator for every component is the same and
is a function of the variable m2 = r0 + u⟨φ2

α⟩. The well-known
self-consistency equations relating ⟨φ1⟩, Gφφ , and m2 are

r0 + u

(∫ + d3k

(2π )3
Gφφ(k) + ⟨φ1⟩2

N

)
= m2, (32)

⟨φ1⟩ =
√

Nh1

m2
, (33)

where + is a cutoff on the maximum allowed |k|.
The third equation that completes the theory in equilibrium

is

G
eq
φφ(k) = 1

k2 + m2
. (34)

The critical point in the equilibrium theory is at r0 = rc =
−u+/2π2 and hα = 0. The two relevant operators that couple
to r0 and hα are, respectively, |φ⃗|2 and φα , with scaling
dimensions 1 and 5/2 in d = 3. They are, respectively, non-
symmetry breaking and symmetry breaking. Consequently,
we can study all three kinds of protocols along the r0 axis
(ν = 1,z = 2) or along any of the hα axes (ν = 2/5,z = 2).

The equation of motion (25) for Model A dynamics is

∂φα(k,t)
∂t

= −(k2 + m2)φα(k,t) + hα(2π )3δ3(k) + ζα.

(35)

This specifies the functional dependence of Gφφ(k,t ; τQ) on
m2 and completes the dynamical theory.

1. Scaling limit for TCPs and CCPs along the r0 axis

Here, hα = 0 and δ(t ; τQ) = r0(t ; τQ) − rc. Equation (33)
implies that the one-point correlator for all components is
zero: ⟨φα⟩ = 0. We henceforth drop component subscripts.
We will make frequent use of the Gaussian result (28), which
we reproduce here for the reader’s convenience:

Gφφ(k,t ; τQ; r0) = 2
∫ t

−∞
dt ′ e−2

∫ t

t ′ dt ′′[k2+r0(t ′′;τQ)].

The notation Gφφ(k,t ; τQ; r0) emphasizes that Gφφ depends on
r0(t ; τQ).

Observe that the solution to Eq. (35) is exactly that of
the free Gaussian case [Eq. (27)] with r0(t ; τQ) replaced by
m2(t ; τQ). Consequently, the third equation that completes the
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dynamical theory is

Gφφ(k,t ; τQ) = Gφφ(k,t ; τQ; m2), (36)

where the right-hand side refers to the Green’s function of (36)
with r0(t ; τQ) replaced by m2(t ; τQ). The critical value rc of r0
in this notation is

rc = −u

∫ + d3k

(2π )3
Gφφ(k,t ; τQ; 0). (37)

One can now re-express (32) as

m2(t ; τQ) = δ(t ; τQ) + u

∫ + d3k

(2π )3
[Gφφ(k,t ; τQ; m2)

−Gφφ(k,t ; τQ; 0)]. (38)

Let us now take the scaling limit. The KZ length and
time scales are tQ = (τ a

Q
/δ0)

2
2a+1 and lQ = √

tQ. Dimensional
considerations imply that the scaling form of m2(t ; τQ) is
m2(t ; τQ) ∼ M2(t̄)/l2

Q
. By using the leading-order behavior

of the protocol near the critical point δ(t ; τQ) ∼ (−t̄)a/ lQ, we
derive the following scaled form of Eq. (38):

(−t̄)a + 2u

∫ t̄

−∞
dt̄ ′

∫ ∞ d3k̄

(2π )3

×
(
e−2

∫ t̄

t̄ ′ dt̄ ′′(k̄2+M2) − e−2
∫ t̄

t̄ ′ dt̄ ′′ k̄2) = 0. (39)

We note the following points:
(1) The cutoff + appears in the unscaled equation only as

the upper limit on the momentum integral. In the scaling limit,
the upper limit ∼ +lQ → ∞ and the scaled relation is cutoff
independent.

(2) The scaled relation, being a limiting form, is simpler
than the unscaled one.

(3) The relation above is unchanged by keeping higher-
order terms in r0(t ; τQ). This is tantamount to proving the
universality of all correlators with respect to details of the
protocol away from the critical point in the scaling limit.

2. Scaling forms for the linear TCP

Fortunately, Eq. (39) can be solved when a = 1. The choice
u =

√
8π simplifies prefactors and makes apparent the form

of the solution. Defining

f (t̄) ≡ e2
∫ t̄

0 dt̄ ′M2(t̄ ′) or M2(t̄) = f ′(t̄)
2f (t̄)

, (40)

the solution is

f (t̄) = −31/3.(1/3)e2t̄3/3[t̄ Ai(t̄2) + Ai′(t̄2)] .

Ai is the Airy function of the first kind and . is the gamma
function. We may reduce Gφφ to quadrature

Gφφ(k̄,t̄) = 2
∫ t̄

−∞
dt̄ ′e−2

∫ t̄

t̄ ′ dt̄ ′′[k̄2+M2(t̄ ′′)],

and compute all higher cumulants using Wick’s theorem.
As t̄ → −∞, we recover the equilibrium behavior in

Eq. (31) with ξ ∼ 1/(−t). The results from the coarsening
literature36 in this theory are

lco(t) =
√

t,Gco
φφ[klco(t)] = exp{−2[klco(t)]2}.

FIG. 4. (Color online) Gφφ(k̄,t̄) vs k̄ at fixed time slices for the
linear TCP. The blue, red, and green solid lines are, respectively, at
t̄ = 0.5, 0, and −0.5. The green dashed line is the correlator if the
system were in equilibrium at t̄ = −0.5. Inset: Lne vs t̄ (solid line)
and ξ/lQ (dashed line).

We should therefore expect that Lne ∼
√

t̄ and Gφφ ∼
t̄5/2 exp(−2k̄2 t̄) as t̄ → ∞. As is seen from Fig. 4, both
asymptotes are correctly predicted for Lne. We have checked
this for Gφφ as well. This verifies that the asymptotes predicted
in Eqs. (14) and (16) are correct in this theory.

3. Scaling limit for TCPs and CCPs along h1 axis

Setting r0 = rc, we can explore symmetry-breaking pro-
tocols along the h1 axis. The implicit relation from the
self-consistency equations for the linear TCP is

(∫ t̄

−∞
dt̄ ′ t̄ ′

√
f (t̄ ′)

)2

=
∫ t̄

−∞
dt̄ ′

f (t̄) − f (t̄ ′)
|t̄ − t̄ ′|3/2

. (41)

Although scaling is guaranteed, we can not proceed further as
the solution to this equation is not known.

V. GAUSSIAN QUANTUM FIELD THEORIES

We now turn to the KZ problem near quantum critical
points. Again, it will prove instructive to investigate the class
of ferromagnetic critical points with O(N ) symmetry. We will
consider the simplest nontrivial case, that of Gaussian scalar
fields. The Lagrangian we consider is

L = 1
2

[
∂µφ∂µφ − m2φ2] , (42)

where we permit m2 to depend on time (δ ≡ m2). Standard
critical exponents include z = 1 (owing to relativistic symme-
try when m is a constant) and ν = 1/2 (owing to the Yukawa
form of the Green’s function for static sources when m is a
constant).

A. Second quantization

The second-quantized treatment of φ is based on the
expansion

φ(x,t) =
∫

ddk

(2π )d
eik·xφk(t), (43)

where we set

φk(t) = fk(t)ak + f ∗
−k(t)a†

−k (44)
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and impose the commutation relations

[ak,a
†
k′ ] = (2π )dδd (k − k′). (45)

Owing to rotational symmetry, the mode functions fk(t)
and Green’s functions only depend on the magnitude of the
momentum k. The mode functions fk(t) satisfy the mode
equation

[
d2

dt2
+ /2

k(t)
]

fk(t) = 0, (46)

where

/2
k(t) ≡ k2 + m2(t). (47)

One must also impose the Wronskian condition

fkḟ
∗
k − ḟkf

∗
k = i (48)

in order to obtain standard commutation relations between φk

and its conjugate πk = φ̇
†
k. Once the mode functions fk are

specified, a Fock space vacuum |0⟩ can be defined through the
conditions ak|0⟩ = 0.

In general, Eq. (46) is hard to solve exactly. However, the
techniques of Wentzel-Kramers-Brillouin (WKB) provide an
approximate solution when /k is real, positive, and varying
“slowly enough”; to this end, let us define the oscillatory,
positive frequency WKB solution

f̃k(t) = 1√
2/k(t)

exp
{
−i

∫ t

dt ′ /k(t ′)
}

, (49)

where the lower limit of integration can be specified
at our later convenience. If one defines ãk(t) through
the equations φk(t) = f̃k(t)ãk(t) + f̃ ∗

k (t)ã†
−k(t), and requires

[ãk(t),ã†
−k(t)] = (2π )dδd (k − k′) for all t , then (f̃k(t),f̃ ∗

k (t))
and (fk(t),f ∗

k (t)) are related through the standard Bogoliubov
transformation.

As m2 is slowly varying and positive at large negative times,
the evolution is adiabatic and we require that the fk coincide
asymptotically with the positive frequency WKB solutions f̃k

as t → −∞. Thus, |0⟩ is the “out” vacuum in the parlance
of Refs. 52 and 53, and we assume that our system has
been prepared in this vacuum. All expectation values unless
otherwise indicated are with respect to this state.

B. Scaling limit

In the classical context, we first solved the complete
dynamical problem for arbitrary initial condition and protocol
choice. We then established that all local physical quantities
reduced to universal forms independent of the details of the
protocol away from the critical point and the initial conditions
in the KZ scaling limit. We repeat the same exercise here by
using WKB methods to solve Eq. (46) for a general TCP/CCP
in m2(t ; τQ).

Assume that the system is initially prepared in the vacuum
state. The solution to Eq. (46) is well approximated by the
positive oscillatory WKB solution f̃k at early times, and by
a linear combination of the WKB solutions f̃k and f̃ ∗

k at late
times, as long as the frequency /k is much larger than the
rate at which the frequency changes |d/k/dt |. This yields
the condition |dm−1/dt | ≪ 1. Within the window |t | < τQ,

we use the leading-order expansion for m2(t ; τQ) in t/τQ,

m2(t ; τQ) = m2
0

(
− t

τQ

)a [
1 + a1

t

τQ

+ · · ·
]

, (50)

to conclude that the WKB solutions are valid as long as |t | ≫ tQ
or |t̄ | ≫ 1. Note that tQ using Eq. (5) is

tQ = τ
a

2+a
Q

/
m

2
2+a

0 . (51)

Directly solving the mode equation using the expansion in
Eq. (50) yields a solution valid in the region |t | ≪ τQ or |t̄ | ≪
τQ/tQ. Thus, the overlap in the ranges of the validity of the
direct solution and the WKB one is

1 ≪ t̄ ≪ τQ

tQ
. (52)

We are now in a position to take the KZ scaling limit
whereby τQ → ∞ and all quantities are measured in units
of the KZ length and time. We first notice that the region of
overlap in Eq. (52) diverges. The mode equation near t = 0
also simplifies in scaled units. We see from Eq. (48) that fk

carries dimensions of
√

t , so its scaling form is

fk ∼
√

tQf̄k̄, (53)

where k̄ = lQk as usual and lQ = tQ. The scaled mode equation
in the window |t | < τQ before any limits are taken is

[
d2

dt̄2
+ /̄2

k̄
(t̄)

]
f̄k̄ = 0, (54)

where /̄2
k = k̄2 + m̄2(t̄) and

m̄2(t̄) = (−t̄)a
[

1 + a1
tQt̄

τQ

+ a2

(
tQt̄

τQ

)2

+ · · ·
]
. (55)

In the KZ scaling limit, tQ/τQ → 0 and the corrections in the
square brackets vanish, resulting in the simpler scaled mode
equation

[
d2

dt̄2
+ k̄2 + (−t̄)a

]
f̄k̄ = 0. (56)

The goodness of the approximation is parametrically con-
trolled by the smallness of the parameter tQ/τQ. Corrections
to the diverging overlap in the ranges of the validity of the
solution to the scaled equation above and the WKB one is
also controlled by the same small parameter tQ/τQ. Thus, the
solution to Eq. (54) picked out by starting with a positive
frequency WKB solution at early times is the same as the
one picked out by applying the early-time positive frequency
condition directly to the solutions of the limiting equation (56).
This is the sense in which the mode functions in the scaling
limit are universal. It is worth noting that these considerations
are merely an elaboration of the standard arguments used to
justify turning-point formulas in standard WKB treatments of
the time-independent Schrödinger equation in the geometric
optics limit.

Finally, let us note that the above considerations will
not apply to the marginal ECP. For a given nonuniversal
regularization of the protocol at small time (t < τQ), the
direct solution to the mode equation in the power-law regime
(t ≫ τQ) has no overlap with the positive-frequency WKB
solution at early times. As we discuss later, this implies that
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some information about the short-time regularization must
enter the scaling limit.

C. Quasiparticles, heat density, and diagonal entropy

As the Gaussian problem is integrable, quasiparticles are
well defined and infinitely long lived. The quasiparticle
number at momentum k, Nk , is defined as the expectation
value of the occupation of mode k and has the scaling form

Nk̄(t̄) ≡ ⟨ã†
k(t)ãk(t)⟩

= 1
2|/̄k̄|

|∂t̄ f̄k̄ + i/̄k̄ f̄k̄|2. (57)

The excess energy density is given by q(t ; τQ) =∫
ddk/(2π )d/kNk and is easily seen to obey the scaling

form conjectured in Eq. (23). A definition of the entropy
density of the system at each instant of time is through
the diagonal entropy density. The diagonal entropy density
s is the entropy density of the diagonal components of the
density matrix ρ(t ; τQ) in the many-body adiabatic basis. In
the Gaussian problem, s is additive in the label k and this
definition simplifies to

s(t ; τQ) = −
∫

ddk

(2π )d
∑

m

ρmk,mk ln(ρmk,mk).

Here, ρmk,mk is the absolute value squared of the overlap
between the time-evolved wave function |ψ(t)⟩, and the mth
excited state of the harmonic oscillator labeled by k. The
integral only runs over half the volume in k space as the
modes k and −k are coupled by the Hamiltonian. ρmk,mk can
be directly computed in the Schrödinger picture because the
time-evolved wave function is known in terms of the mode
functions. In the eigenbasis of the operator φk defined in
Eq. (44), the wave function is a Gaussian54

⟨φk|ψ⟩ ∝ exp
[
−

∫
ddk

(2π )d

(
1

|fk(t)|2
− i

ḟk(t)
fk(t)

)
φkφ−k

]

up to normalization and time-dependent phases. In the scaling
limit, fk(t) ∼ √

tQfk̄(t̄) and s has the scaling form predicted
in Eq. (23). As all that is at issue is the scaling of the mode
functions fk(t), the scaling forms of correlation functions may
also be easily verified:

Gφφ(k,t ; τQ) ≡ |fk(t)|2 ∼ tQ|f̄k̄(t̄)|2 ∼ tQGφφ(k̄,t̄). (58)

D. Linear protocol

We now turn to a particular protocol, namely, the linear
quench, where the KZ time is tQ = (τQ/m2

0)1/3. For this case,
the mode equation can be solved in closed form to give

f̄k̄(t̄) =
√

π

2
[Bi(t̄ − k̄2) + i Ai(t̄ − k̄2)], (59)

where Ai and Bi are Airy functions of the first and second
kinds. The scaling function of the two-point function from
Eq. (58) is

Gφφ(k̄,t̄) = π

2
[Ai2(t̄ − k̄2) + Bi2(t̄ − k̄2)]. (60)

FIG. 5. (Color online) Gφφ for the linear TCP. The blue, red, and
green solid lines are, respectively, at t̄ = 0.5, 0, and −0.5. The green
dashed line is the correlator if the system were in equilibrium at
t̄ = −0.5. Inset: Lne vs t̄ (solid line) and ξ/lQ (dashed line).

As a check, we may retrieve the equilibrium result when t̂ →
−∞ holding kξ or k̄/

√
−t̄ fixed:

Gφφ(k̄,t̄) ∼ 1
2/̄k̄

. (61)

The equilibrium result is not retrieved when t̄ → ∞ because
of the pathology of the inverted φ2 term when t̄ > 0. Instead,
Gφφ grows exponentially with t̄ . From Gφφ we can calculate
the nonequilibrium correlation length

ξne ∼ tQ

√
∂t̄ [Ai(t̄)2 + Bi(t̄)2]

Ai(t̄)2 + Bi(t̄)2
, (62)

the scaling form Lne of which is plotted in Fig. 5(a). At large
positive t , Lne grows polynomially instead of exponentially
with time, despite the instability of the adiabatic theory with an
inverted φ2 term. As the adiabatic problem is pathological for
t̄ > 0, we can only sensibly talk of quasiparticle occupations
and thermodynamic quantities as long as t̄ " 0. In Fig. 6, we
plot Nk̄(t̄) and Sk̄(t̄) for various values of k̄ (the behavior of
the excess energy density can be inferred from the number
of quasiparticle excitations). The contribution to the total
quasiparticle density from the high-wave-number (k̄ ≫

√
−t̄)

modes for t̄ ≪ −1 is finite only if d < 6:
∫ ∞

√
−t̄

dd k̄

(2π )d
Nk̄(t̄) ∼ 1

(−t̄)3−d/2
if d < 6.

The total quasiparticle density and, consequently, the energy
and entropy densities, are ill defined in the scaling limit within
this integrable model when d ! 6. Additionally, observe that
N0̄ diverges at t̄ = 0 because the gap /0 between the ground
and excited states of the oscillator at k̄ = 0 closes at t̄ = 0.

FIG. 6. (Color online) Left: Quasiparticle number Nk̄(t̄) for k̄ =
0,0.25,0.5. Right: Diagonal entropy Sk̄ for k̄ = 0,0.01,0.1,1 from
top to bottom in the linear TCP.
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E. CCP: Quadratic protocol

We now turn to a case where the adiabatic problem is well
defined for all t̄ : the quadratic CCP. The KZ time here is
tQ = (τQ/m0)1/2. The scaling forms of the mode functions and
the equal-time two-point function are

f̄k̄(t̄) = 2−1/4e− π k̄2
8 D −1+ik̄2

2

(
−

√
2e− iπ

4 t̄
)
,

Gφφ(k̄,t̄) = e− π k̄2
4

√
2

∣∣D −1+ik̄2
2

(
−

√
2e− iπ

4 t̄
)∣∣2

. (63)

Dν(z) is the parabolic cylinder function.
As t̄ → ±∞ holding kξ or k̄/t̄ fixed, we recover the

equilibrium forms

Gφφ(k̄,t̄) ∼ 1
2/̄k̄

. (64)

The retrieval of the equilibrium form as t̄ → ∞ is by no
means guaranteed. Recent work30 suggests that this question is
intimately tied to the dephasing of the off-diagonal terms in the
time-averaged density matrix in the instantaneous eigenbasis.
If the off-diagonal terms do not dephase, which would be
the case for example for the quartic quench, then equilibrium
behavior is not expected as t̄ → ∞.

The Gaussian theory imposes further structure on correla-
tors because each momentum mode evolves independently of
the others. Consider the time evolution of the wave function of
the harmonic oscillator labeled by k̄ in the Schrödinger picture.
Expanding it in the eigenbasis of the Hamiltonian at time t̄ and
suppressing the label k̄,

|ψ⟩ ≈ A0|0(t̄)⟩ + A1|1(t̄)⟩ . . . .

The time evolution is adiabatic when t̄ ≫ 1 and each |Ai |
approaches a constant. The relative phase between Ai+1 and
Ai on the other hand grows as

∫ t̄
/̄k̄(t̄ ′)dt ′ ∼ t̄2. This is the

origin of the oscillations of period 1/t̄ at large positive t̄ at
each k̄, seen, for example, in Lne in Fig. 7(b).

The simple definition of ξne in Sec. III A4 has to be modified
as Gφφ(k̄,t̄) has multiple poles in the complex k̄ plane for late
times. The pole with the smallest imaginary part determines the
decay constant (1/ξne) over the longest length scales in the two-
point function in real space. The nonequilibrium correlation
length is plotted in Fig. 7(b). As t̄ → ±∞, the envelope of ξne
behaves as

ξne(t̄) ∼ 1
|t̄ |

.

FIG. 7. (Color online) Left: Gφφ for the quadratic CCP. The blue,
red, and green solid lines are, respectively, at t̄ = 0.5, 0, and −0.5. The
green dashed line is the correlator if the system were in equilibrium
at t̄ = −0.5. Right: Lne vs t̄ (solid line) and ξ/lQ (dashed line).

FIG. 8. (Color online) Left: Quasiparticle number Nk̄(t̄) for k̄ =
0,0.25,0.5. Right: Diagonal entropy Sk̄ for k̄ = 0,0.01,0.1,1 from
top to bottom in the quadratic CCP.

This confirms the prediction in Eq. (16) for CCPs with no
coarsening physics.

Finally, we plot Nk̄(t̄) and Sk̄(t̄) for various values of k̄
in Fig. 8. In each oscillator, the quasiparticles and entropy
are essentially produced in the time interval |t̄ | # 1. At late
times, both quantities settle to a constant dependent on k̄. For
example,

Nk̄(t̄) → e−π k̄2
as t̄ → ∞.

As was the case for the linear quench, the total quasiparticle
and entropy densities are finite only if d < 6.

F. Marginal ECP

The relativistic Gaussian theory provides an ideal setting
to study the nonequilibrium states that arise in the marginal
ECP. The protocol is defined by Eq. (21): m(t) smoothly
transitions from a constant to θ/t over the time scale τQ and
ξ̇t , the parameter that controls adiabaticity, equals 1/θ for
t ≫ τQ. Our naive expectation is that the mode function is of
a universal scaling form fk(t) =

√
t f̄ (kt), in the scaling limit

t → ∞,k → 0 with kt held fixed.
This expectation is violated on two fronts even in the

Gaussian problem. The first is that the marginal ECP is
by construction unable to entirely “forget” its early-time
regularization. More precisely, observe that our choice of
protocols implies that |dm−1/dt | ≪ 1 when t ≪ τQ while
|dm−1/dt | = 1/θ when t ≫ τQ. The latter result shows that
for small enough k, it is not possible to reach the power-law
regime while remaining adiabatic, in contrast to our discussion
of the TCP and CCP cases; thus, we should expect that some
nonuniversal information must make its way into the putative
scaling regime. The second and more striking violation is that
of scaling. When θ > 1/2 and |dm−1/dt | is closer to obeying
the condition of adiabaticity, scaling is violated “mildly”
and all physical quantities are periodic functions of ln(t).
When θ = 1/2, scaling is violated logarithmically. The most
dramatic violation of scaling is when 0 < θ < 1/2. Here, the
adiabaticity condition is strongly broken and the scalar field
acquires an anomalous dimension.

Let us now describe how these features emerge in the long-
time, small momentum form of the mode functions. The mode
equation for t ≫ τQ

(
d2

dt2
+ k2 + θ2

t2

)
fk(t) = 0. (65)
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Define λ ≡ |
√

1
4 − θ2| and

h(λ) =

⎧
⎨

⎩

iλ if θ > 1/2,
0 if θ = 1/2,
λ if θ < 1/2.

(66)

Setting k = 0, Eq. (65) is solved as

f0(t) =

⎧
⎪⎨

⎪⎩

√
t
[ 2−λu

.(1+λ)

(
t

τQ

)h(λ) + −2λ.(λ)v
π

(
t

τQ

)−h(λ)]

if θ ̸= 1/2,
√

t
[
u + v ln

(
t

τQ

)]
if θ = 1/2.

The units of t are chosen such that f0(τQ) ∼ √
τQ. The

particular λ-dependent prefactors are chosen to simplify the
solution at all k. v and u are nonuniversal constants in
the equation above. They depend on the detailed preasymptotic
form of the protocol and are fixed by the solution to the
differential equation with the full time dependence of the mass.

Let us now turn to k ̸= 0. For times greater than τQ, the
mode equation is solved by the linear combination

fk(t) =
√

t[cJ (k) Jh(λ)(kt) + cY (k) Yh(λ)(kt)]. (67)

Jν(x) and Yν(x) are the Bessel functions of order ν of the
first and the second kind. The functions cJ (k) and cY (k)
are presently undetermined except for the requirement of
smoothness in k. However, if we examine the region t ≫
τQ at small kt , we can obtain their leading-order behavior
by requiring that they match smoothly to the k = 0 forms
presented earlier. This localizes the nonuniversality to the
constants u,v discussed already. For θ < 1/2 and k smaller
than some nonuniversal k0, this leads to the leading behavior

cY (k) = v(kτQ)λ, cJ (k) = u(kτQ)−λ − v
(kτQ)λ

π
cot πλ. (68)

For θ > 1/2, we simply replace λ by iλ. For θ = 1/2, we find

cY (k) = π

2
v, cJ (k) = u − v ln

kτQeγ

2
. (69)

γ is the Euler-Mascheroni constant. We emphasize that the
mode function and consequently all physical quantities are
well approximated by Eq. (67) with the forms of cJ and cY

above for t ≫ τQ and k ≪ k0.
We now turn to the physical implications of these solutions

for an arbitrary choice of (u,v) that satisfy the constraint
imposed by the Wronskian condition (48). First consider the
case 0 < θ < 1/2, which is strongly nonadiabatic in the sense
that |dm−1/dt | = 1/θ is greater than 2 and may be large. The
mode function in Eq. (67) can be rewritten in the form

fk(t) = t1/2
(

t

τQ

)λ [
g+(kt) +

(
t

τQ

)−2λ

g−(kt)
]
. (70)

g+ and g− are linear combinations of the two Bessel functions
and involve the constants u,v. Observe that in the limit of large
t (t ≫ τQ) with kt fixed, the ratio of the second to the first term
in the expression above decreases as (t/τQ)−2λ.55 Thus, in the
scaling limit, fk(t) simplifies to

fk(t) ∼ u′t1/2+λf̄ (kt) ∼ u′t1/2+λ Jλ(kt)
(kt)λ

. (71)

FIG. 9. (Color online) Gφφ(kt) and N (kt) vs kt when λ = 0.1 and
u/τ λ

Q
= −2.5i.

u′ = u/τλ
Q

above. The scaling forms predicted in Sec. III B do
not hold. Instead, the form above is the one expected when the
field φ has an anomalous dimension λ. The scaling form of
Gφφ with the modified dimension of φ is

Gφφ(k,t) ∼ t1+2λGφφ(kt). (72)

In real space, this implies that the equal-time two-point
correlator decays as 1/xd−1−2λ at fixed x/t . Analogously, the
quasiparticle number Nk(t) has the scaling form t2λN (kt). The
scaling functions are

Gφφ(kt) = |u′|2f̄ 2,

N (kt) = |u′|2 |(kt)∂kt f̄ + i
√

(kt)2 + (θ )2f̄ |2

2
√

(kt)2 + (θ )2
.

They are shown in Fig. 9. Three comments are in order. First,
in the marginal ECP, ξ ∼ t and the time scale for a change
in m is the same as ξ = ξt . We therefore expect that the
nonequilibrium correlation length ξne also grow linearly in
time. This is indeed the case; the oscillations in Gφφ(kt) ∼ t
in Fig. 9 are of order one period and indicate a peak at
r ∼ t in the real-space correlator Gφφ(r/t). Second, the excess
energy density above the instantaneous vacuum decreases as
1/t1−2λ. The marginal ECP thus leads the system to the critical
point through a family of new, nonequilibrium states. Finally,
all scaling functions are known up to a multiplicative constant
(u′) in the scaling limit.

Let us consider the case θ > 1/2, which is weakly nona-
diabatic in the sense that |dm−1/dt | = 1/θ is less than 2 and
may be small. A rewriting of the mode function informs us
that the scaling is violated only by phases:

fk(t) =
√

t

[ (
t

τQ

)i|λ|
g+(kt) +

(
t

τQ

)−i|λ|
g−(kt)

]
. (73)

These phases affect other physical quantities in the scaling
limit, but in relatively mild ways as compared to the previously
seen factors of tλ. For instance, at late times holding kt fixed,

Gφφ(k,t) ∼ t Gφφ(kt,ei|λ| ln(t/τQ)) , (74)

where we have expressed t i|λ| = ei|λ| ln t in order to emphasize
that this quantity is periodic in ln t . The scaling function Nk is
also periodic in ln t . The two “almost-scaling” functions Gφφ

and Nk(t) are plotted in Fig. 10 for three equally spaced values
of ln t within a decade. The late-time behavior of Gφφ in the
marginal ECP differs markedly from the adiabatic response,
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FIG. 10. (Color online) Gφφ(k,t)/t and Nk(t) vs kt when λ = i

plotted at three equally spaced time on the ln(t) scale: t = 10 (red
line), 10 eπ |λ|/3 (green line), and 10 e2π |λ|/3 (blue line). The dashed
line is the adiabatic response. (u,v,τQ) are chosen to be (

√
3/2,1,1).

shown as a dashed line in the plot. The period oscillations
in the two-point correlator imply that ξne ∼ t . The smaller
excess energy density proportional to 1/t is an indicator
that the system is closer to being in equilibrium than for
the strongly nonadiabatic case 0 < θ < 1/2. In a sense, the
factors of t i|λ| = ei|λ| ln t can be regarded as introducing only
“logarithmic” modifications of scaling.

The case θ = 1/2 displays the properties of both the cases
discussed above. The relations in Eq. (69) imply the form

fk(t) =
√

t[g+(kt) + ln(t/τQ)g−(kt)].

At late times with kt fixed, the second term dominates the first
and the mode function has the scaling form

fk(t) ∼ u
√

t ln t J0(kt).

All scaling forms are thus modified by prefactors of powers
of ln t . The logarithmic violation of scaling is similar to the
weakly nonadiabatic case θ > 1/2, while the modification of
the dimension of φ is similar to the strongly nonadiabatic
case. The quasiparticle number here diverges logarithmically
in time.

The excess energy density injected into the system de-
creases as t increases in the strictly Gaussian theory. The
marginal ECPs thus define a family of nonequilibrium states
that lead to the critical point that are universal when the Gaus-
sian fixed point is stable. The vanishing excess energy density
further suggests that the nonequilibrium states generated by
the marginal ECP survive even when the fixed point is not
Gaussian.

Finally, let us comment on the ECP in the transverse-field
Ising model in (1 + 1) dimensions, which is famously a model
of free fermions. Here, ν = 1 and z = 1 so the relevant power
is now a = 1. The explicit solution of the fermionic mode
equations exhibits the analogs of our weakly nonadiabatic
regime with corrections to scaling that are periodic in ln t .32

Connecting this behavior to our Gaussian results discussed
above by continuation in the number of dimensions is an
interesting challenge for future work.

1. Analogies to d Sd+1/C FTd

We showed above that in the long-time limit of the solution
to the mode equation in the strongly nonadiabatic case Eq. (70),

the scalar field acquires an anomalous dimension λ. If we
instead took the opposite limit of small time (t ∼ τQ), the
second term is more important than the first and the anomalous
dimension of the scalar field is −λ. Thus, the effective scaling
dimension of φ in dimension d is

!̃± = d − 1
2

± λ (75)

at short and long times, respectively. Readers familiar with
the (A)dSd+1/(C)FTd literature, in particular,56,57 will note a
similarity between the result Eq. (72) and the d-dimensional
field-theory Green’s function obtained in the presence of a
double-trace deformation. We can make the analogy closer by
noting that the modified scalar field

ϕ ≡ t
d−1

2 φ

obeys an equation of motion which follows from the La-
grangian

L = 1
2

√
− det gαβ(−gµν∂µϕ∂νϕ − M2ϕ2), (76)

where gµν is the metric of de Sitter space, dSd+1:

ds2 = L2

t2
(−dt2 + dx⃗2). (77)

The length scale L is arbitrary. The de Sitter mass must be
given by

M2L2 = θ2 + d2 − 1
4

(78)

in order for the equation of motion from Eq. (77) to agree with
Eq. (65). The dimensions Eq. (75) are closely related to the
usual ones in dS/CFT:

!± = d

2
±

√
d2

4
− M2L2 = !̃± + 1

2
. (79)

The difference arises due to an important distinction between
the late-time Green’s function (72) and the d-dimensional
field-theory two-point function. Examples of the latter could
be computed in dSd+1 in terms of early time (that is, small t)
properties of mode functions associated to the “out” vacuum:
that is, mode functions which are purely positive frequency at
late times. Our computation is the reverse of this, in the sense
that we investigate late-time properties of mode functions
associated with an “in” vacuum. Late time corresponds to
the deep interior of dSd+1 (more precisely, it is a corner of
the global covering space far from the boundary at t = 0).
Another difference (of lesser consequence) is that in the normal
parlance of dS/CFT,56 time flow would be reversed, so that
what we call t = 0 is the far future, while t → ∞ is the far
past.

In the window kt ≪ 1, fk(t) is k independent and equal to
f0(t):

t
d−1

2 fk(t) ≈ aϕ t!− + bϕ t!+ , (80)

where bϕ,aϕ are known in terms of u,v,τQ, and in particular
have a definite ratio. This setup now bears a strong resem-
blance to double-trace operator deformations in AdS/CFT.57

In AdS/CFT, the relativistic conformal symmetry of the
boundary theory is broken by the multitrace deformation.
The presence of different powers of x in the real-space
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Green’s function dependent on the energy scale 1/τQ signals
a similar breakdown of scaling. The same can be said of the
weakly nonadiabatic case, but comparisons with a boundary
field theory are harder in this case because the field theory
would have to be nonunitary, similar to violations of the
Breitenlohner-Freedman bound58 in AdS/CFT. However, the
dSd+1 formulation (76) does offer some further intuition
regarding the weakly nonadiabatic case: Eq. (78) shows that
large θ implies large M2L2. This in turn implies that the
Compton wavelength of the massive scalar is much smaller
than the Hubble scale of dSd+1, which is precisely the condition
one needs in order to justify a geometric optics approximation.

VI. CLOSING REMARKS

Our primary purpose in this paper has been to systematize
the universal content of the KZ problem and to emphasize that
all physical quantities give rise to universal scaling functions
that span the entire crossover from equilibrium at early times to
the late-time state. We have presented model computations that
bear out this logic. Experiments directed towards observing
this broader scaling picture would be highly desirable. We note
that the scaling ideas presented here do not rely on the existence
of a local order parameter and generalize straightforwardly
to the Rajanti-Hindmarsh mechanism59 as we will discuss
elsewhere.

An obvious challenge is to extend such computations to
more physically realizable problems where the field theories
are not as simple. We will present some results on nontrivial,
but not physically realizable field theories, via the AdS/CFT
correspondence elsewhere. Another obvious challenge is to
formulate a renormalization group procedure that makes the
universality manifest, beyond the case of stochastic classical
models with the associated functional integral formalism
discussed here.

A by-product of our analysis has been the identification
of an especially interesting ECP which is able to produce
anomalous dimensions already at the Gaussian level, through a
mechanism similar to the way anomalous dimensions emerge
in (A)dS/CFT. A deeper understanding of this phenomenon
and its examination in interacting contexts is also a fit subject
for further exploration.
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APPENDIX: SCALING FORM OF f (t; τQ) IN THE
GAUSSIAN THEORY WITH MODEL A DYNAMICS

To determine the generating functional in one higher
dimension, we follow the three steps prescribed in Refs. 42
and 43:

(i) Define φζ as the solution of the equation of motion in
Eq. (25) for a given noise history ζ : J φζ (k,t) = ζ (k,t). J is
a linear operator in the Gaussian theory.

(ii) Rewrite Z as
∫

dζP (ζ ) exp(Jφζ ). The noise distribution
P (ζ ) is Gaussian.
(iii) Recognize that the probability distribution for φζ is

related to the noise distribution as Pφ(φζ ) = P (J φζ )det(J ).
The generating functional of correlation functions of φ so

obtained is

Z[J,τQ] =
∫

Dφ det(J ) e
∫

d3k dt [−2|J φ(k,t)|2+J (k,t)φ(−k,t)],

(A1)

where

J = ∂

∂t
+ k2 + r0(t ; τQ). (A2)

The functional integral is Gaussian, and the free-energy density
is expressed in terms of the structure factor in Eq. (28) as

f (t ; τQ) =
∫

d3k

(2π )3
ln

[
G−1

φφ (k,t ; τQ)
]
.

The challenge in identifying fna, even in the time-independent
setting, lies in subtracting cutoff-dependent terms from f
that are analytic in δ. Here, it involves subtracting the
cutoff-dependent equilibrium contribution at the critical point
f (0,∞), and two terms that are linear and logarithmic in the
cutoff. On taking the KZ scaling limit of the terms remaining,
we confirm the scaling form in Eq. (19):

fna(t ; τQ) ∼ 1
ld
Q

F(t̄),

F(t̄) = 1
6π2

∫ ∞

0
dk̄

[
k̄2

(
2 + k̄

Gφφ

dGφφ

dk

)
+ 2 (−t̄)a

]
.
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Phys. Rev. E 60, 6343 (1999).
43P. C. Martin, E. D. Siggia, and H. A. Rose, Phys. Rev. A 8, 423

(1973).
44H. K. Janssen, B. Schaub, and B. Schmittmann, Z. Phys. B 73, 539

(1989).
45See Ref. 47 for a discussion of why the total excitation energy

is sensibly called heat. For infinite systems where one needs to
work with intensive quantities though, a heat density is not a useful
concept especially when macroscopic subregions exhibit thermal
equilibration.

46A. Polkovnikov, Ann. Phys. (NY) 326, 486 (2011).
47A. Polkovnikov, Phys. Rev. Lett. 101, 220402 (2008).
48For an isolated system at finite temperature, the dynamics involves

starting with a typical state with the thermodynamic limit energy
density. At high temperatures, a typical state must look “classical”;
this suggests that the behavior of the entanglement entropy and is-
sues of many-body localization (Ref. 60) need further examination.
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