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Abstract – Weakly disordered two-dimensional superconductors undergo a Kosterlitz-Thouless
(KT) transition, where at a critical temperature vortices proliferate through the system and
destroy the superconducting (SC) order. On the other hand, it was suggested that for large
disorder the system separates into regions of high SC order, and it is the percolation of coherence
between these regions that is lost at the critical temperature. Here we demonstrate that both these
descriptions can be applied, suggesting that they are the dual of each other. A vortex causes loss of
local correlations, and thus the loss of percolation of correlations is concomitant with percolation
of vortices on the dual lattice, in the perpendicular direction, i.e. the KT transition.
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Introduction. – The interplay of disorder and super-
conductivity has been a subject of research from the early
days of BCS theory [1], when Anderson has demonstrated
that weak disorder does not affect the BCS critical
temperature [2]. It was later argued that supercon-
ductivity indeed persists even when the single-particle
states are localized [3], but eventually, with strong
enough disorder, superconductivity is destroyed. Thus,
the critical temperature is reduced with increasing
disorder, until it is suppressed all the way to zero for
large enough disorder, indicating a zero-temperature
transition from a superconducting (SC) to an insulating
phase. The situation is even more intriguing in two
dimensions, where, even without disorder, there could be
no long-range SC order at any finite temperature T due
to the Mermin-Wagner theorem [4]. Nevertheless, one
expects a finite-temperature Kosterlitz-Thouless (KT)
transition [5] between a phase with power-law decaying
correlations to a phase with exponentially decaying corre-
lations. This transition is driven by the unbinding and
proliferation of vortex-anti vortex pairs, which destroy
the SC order. The effect of disorder on the KT transition
has become even more relevant since the experimental
observation of superconductor-insulator transition in
thin disordered films, about two decades ago [6,7]. Weak
disorder should not affect the transition, according to the
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Harris criterion [8]. In the presence of strong disorder,
however, it has been established theoretically [9–12]
and observed experimentally [13,14] that the SC order
parameter fluctuates strongly across the sample, creating
“SC islands”, where the SC order is high, surrounded by
areas of weaker SC correlations. Thus, with increasing
temperature the coherence between neighboring SC
islands is quenched, until percolation of coherence from
one side of the sample to the other is lost, leading to the
loss of global SC order [15,16]. This description predicts
that local SC order may persists even when global SC
order is lost, consistent with recent experiments [17–19].
This scenario is very similar to the description of granular
systems [20], where two grains were considered connected
if their effective Josephson coupling was larger than
temperature. Thus, as temperature increases, grains
become disconnected and percolation is lost. Such a
theory was very successful in describing the resistance
and specific heat of granular systems.
It is not clear if these two different descriptions, the

KT description and the percolation one, describe different
transitions, or they are two alternative descriptions of the
the same transition. In this letter we study, starting from
a microscopic model, the thermal phase transition from
a SC to a normal state in amorphously disordered two-
dimensional superconductors. In particular we address the
question of relevance of these two scenarios to describe this
transition.
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Model and method. – We begin with the negative-U
Hubbard model,

H = −
∑

⟨i,j⟩,σ

tijC
†
iσCjσ +U

∑

i

C†i↑C
†
i↓Ci↓Ci↑

+
∑

i,σ

(Vi−µ)C†iσCiσ, (1)

where ⟨i, j⟩ indicates a sum over nearest neighbors, C†iσ
creates a spin-σ electron at site i, tij is the hopping
integral, taken to be the unit of energy in the following,
and U < 0 is the on-site attractive potential. The site-
specific disorder Vi is taken from a uniform distribution of
width 2W such that Vi ∈ [−W,W ], but for each realization
we ensure that

∑
i Vi = 0, and the chemical potential

µ determines the average density n. The choice of the
Hubbard model is because it can lead, depending on
parameters, to a BCS transition, to a KT transition or to a
percolation transition, and thus it is general enough not to
limit a priori the possible transitions, unlike, e.g. the XY
model, which is known to give rise to a KT transition [5]
and may bias the results towards this particular transition.
In order to consider SC fluctuations, crucial for

the description of the transition, we employ a method
that takes into account thermal fluctuations, but
ignores the quantum ones [16,21]. In short, apply-
ing a Hubbard-Stratonovic transformation to the
Hubbard Hamiltonian (1), with a local complex Hubbard-
Stratonovic field, ∆i, and ignoring the temporal depen-
dence of these fields (quantum fluctuations), the partition
function becomes

Z =Tr[e−βH] =

∫
D({∆i,∆∗i })Trf [e−βHBdG({∆i})],

with the Bogoliubov-de Gennes Hamiltonian [22]
HBdG({∆i}) given by

HBdG = −
∑

⟨i,j⟩,σ

tijC
†
iσCjσ +

∑

iσ

(Vi−µ+Ui)C†iσCiσ

+
∑

i

(
∆iC

†
i↑C

†
i↓+∆

∗
iCi↓Ci↑

)
.

Here Ui =
U
2

∑
σ⟨C

†
iσCiσ⟩MF is the (self-consistent)

Hartree-Fock term and Trf traces the fermionic degrees
of freedom over the single-body Hamiltonian HBdG and
can be evaluated exactly using its eigenvalues. Instead of
diagonalizing the Hamiltonian, one can use a Chebyshev
polynomial expansion [23], which makes the calculation
less time consuming. The integral over the fields {∆i,∆∗i }
can then be calculated using the (classical) Metropolis
Monte Carlo (MC) technique [24]. One should note that,
unlike the usual BdG approach, here ∆i are auxiliary
fields, and except at zero temperature where the saddle
point evaluation of the partition function gives rise to the
BdG solution, they are generally different from the local
SC order parameter ⟨Ci↓Ci↑⟩.
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Fig. 1: The edge-to-edge phase correlation Dij (left axis) and
the vortex density nv (right axis) as a function of temperature,
for different values of disorder for 18× 18 system, and U =−4,
and values of disorder depicted in the legend. With increasing
disorder Tc, where bulk coherence is lost and vortices start
to proliferate, shifts to lower values, but the curves still look
similar. The circles denote the percolation temperature Tp
(see text).

This procedure allows the calculation of any ensemble-
averaged quantity. We first calculate the average correla-
tion function Dij ≡ ⟨cos(θi− θj)⟩, where θi is the phase of
the SC order parameter ⟨Ci↓Ci↑⟩, and i and j are two sites,
either on the opposite edges of the sample or nearest neigh-
bors. In principle, a correct measure of SC order is the off-
diagonal long-range order (ODLRO) [25], ⟨C†i↓C

†
i↑Cj↑Cj↓⟩.

By considering correlation between fermion pairs ⟨C†i↓C
†
i↑⟩

and ⟨Cj↑Cj↓⟩, Dij approximates the ODLRO and hence
the decay of the edge-to-edge Dij to zero signals the loss
of bulk SC order in the system. We have confirmed numer-
ically that Dij is a good estimate of ODLRO, while being
much easier to compute.

Results: KT transition at finite disorder. – We
present results for edge-to-edgeDij in fig. 1. As can be seen
in the figure, the coherence is suppressed with increasing
temperature, towards zero. Increasing disorder suppresses
the critical temperature Tc, as expected. Except for the
change in Tc, the decay of correlations at finite disorder
looks very similar to the zero-disorder case, expected to
be described by the KT transition.
In order to quantify this observation further, we calcu-

late the sample-averaged vortex (and anti-vortex) density,
nv. The local vortex density for a single snapshot during
the MC procedure is determined by the clockwise integra-
tion of the phase of the SC order parameter around a single
plaquette. The value of this integral can assume only inte-
ger multiples of 2π, indicating the existence of vortices
(n> 0), anti-vortices (n< 0), or no vorticity (n= 0). In
fig. 1 we also plot nv as a function of temperature. As
can clearly seen, the loss of global phase coherence occurs
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Fig. 2: The PAD exponent [26] α for U =−4, 18× 18 system
for different values of disorder, exhibiting an abrupt change,
signalling the transition. Large dots correspond to Tp from the
percolation picture (see text).

when vortices start to proliferate, for all values of disorder,
indicating a KT-type transition.
Unfortunately, due to the expected slow decay of corre-

lations near the KT transition, a full finite-size scal-
ing analysis is outside the scope of this paper. In order
to further identify the KT characteristics of the transi-
tion, we adopt a particularly elegant analysis proposed by
Polkovnikov, Altman and Demler [26], and used in exper-
imental analysis by Hadzibabic et al. [27]. The idea is to
perform the double sum over all pairwise correlations Dij ,
up to the system size L,

A(L, T )≡ 1
L2

L∑

i=1

L∑

j=1

D2ij(T )∼L−2α(T ), (2)

where the second relation defines the exponent α. As
T → 0 we expect Dij→ 1 meaning that A(L, T → 0) = 1
and therefore α(T → 0) = 0. In the opposite limit, when
T > Tc then Dij decays exponentially with the distance
|i− j|, leading to A(L, T ! Tc)→L−1 and α→ 0.5. At the
KT transition (see [26]), a universal jump from α= 0.25
to α= 0.5 is expected.
Figure 2 depicts our results for the PAD exponent α

as function of temperature, for different values of disor-
der. All the curves (except for the highest disorder, prob-
ably already on the insulating side) exhibit a very similar
behavior —a moderate rise from α= 0 to α≃ 0.25 and
then a rather abrupt rise towards α≃ 0.45 followed by a
a more gradual increase towards α= 0.5, demonstrating a
change from power-law decay of correlations to exponen-
tially decaying correlations, again consistent with the KT
description. We attribute the smoothing of the jump in the
value of the exponent to the finite size of our system, as
the coherence length ξ0, which is approximately given by
!vF /∆, where vF is the Fermi energy and ∆ the SC gap,
is not much smaller than the system size (about a factor

(a) T = 0.02, deep in the SC
state

(b) T = 0.048, in the SC state
close to the transition

(c) T = 0.052 insulating state,
just crossed the transition

(d) T = 0.074 deep in the insu-
lating state

Fig. 3: Percolation transition for a 18× 18 system (U =−4)
at disorder W = 1.3: nearest-neighbor links Dij (lines) colored
from orange for strong correlations, to black for weaker corre-
lations (close to cutoff Dij = 0.45), and disconnected for corre-
lations below the threshold. Temperature changes from deep in
the SC regime (a) to deep in the insulating regime (d). Local
vortex density nv (background) colored from dark green for
low density, to bright yellow for high density, demonstrating
the correlation between the local Dij and the local nv (see also
fig. 4).

of 2 or 3). The fact that the same behavior is observed at
zero disorder, where the KT description is indeed expected
to hold, supports this explanation.

Results: percolation description. – Having estab-
lished the relevance of the KT description for finite disor-
der, we now turn to check whether the same data can be
described by the percolation picture. As with the gran-
ular system, one has to invoke a threshold to determine
whether two sites in our lattice are coherently coupled.
While our results are not sensitive to this particular choice,
here we follow the standard procedure [20,28], where a
link is disconnected when the Josephson coupling J is
reduced below the physical temperature. Since for a single
Josephson junction, Dij = I1(J/T )/I0(J/T ), where In(x)
is a Bessel function of the first kind, then the thresh-
old J = T corresponds to Dij = 0.45. Thus, we set this
value as a threshold for an existing coherence link between
nearest neighbors, and then determine the temperature
where edge-to-edge percolation is lost, Tp. Figure 3 demon-
strates the connectivity of the network for temperatures
from below to above the percolation temperature, where
the existing links are colored by strength of Dij , and the
missing links are those with Dij below the above thresh-
old. The percolation temperature Tp can be determined
for each disorder value, and, in fact, corresponds to an
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Fig. 4: The joint distribution of the local SC correlations and
the local vortex density (normalized to unity at each vortex
density). The strong correlation between the two values persists
with increasing disorder, with the same functional form (solid
line).

average link density of 1/2, consistent with bond percola-
tion on a square lattice. Tp is also depicted as circles in
fig. 1, demonstrating that it is indeed in the region where
bulk correlations decay and vortices start to proliferate.
In principle, of course, setting such a threshold will neces-
sarily lead to a percolation transition. The fact that the
vortex density at the percolation transition is independent
of disorder is a strong indication of the applicability of our
approach.
In order to quantify this last statement further, we

have also plotted in fig. 3 the local vortex density nv,
in brighter shades of green for higher density. As can be
clearly seen, as the local nv increases, the neighboring Dij
decrease and disconnect. In fig. 4 we plot the dependence
of the local Dij on the local nv, for different values of
disorder. This dependence is observed to be independent
of disorder (except for small corrections at zero disorder
and a slightly wider distribution with increasing disorder),
leading to the local Dij , up to some small fluctuations,
being a unique function of the local vortex density. This
observation allows us to relate the two pictures: to destroy
coherence locally, the local vortex density has to be high
enough. Thus, in order for the percolation path of theDij ’s
to disconnect, a perpendicular line connecting points of
nv, larger than some threshold value, has to be formed.
Consequently loss of percolation of the Dij corresponds,
in fact, to percolation of the vortices in the dual lattice
in the perpendicular direction. Since this necessitates a
particular density of vortices, it can only occur when
vortices proliferate, i.e. at the KT transition. This point
is further verified by marking the percolation temperature
on the curves for the PAD exponent, fig. 2. For all values
of disorder, this temperature corresponds to α≃ 0.45, just
as the curves begin to smooth due to the finite size and
exactly where the KT transition should occur.

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1

T

A
ct

iv
e 

lin
k 

de
ns

ity

 

 

W=0
W=0.1
W=0.5
W=0.9
W=1.1
W=1.3

0 0.5 1
0

0.5

1

1.5

Disorder

E
xp

on
en

t

 

 

Fig. 5: Link density p as a function of temperature T . Large
dots indicate Tp and agree well with p= 0.5 as expected from
percolation theory. Solid lines are fits according to eq. (3).
Inset: exponents (B̃ deduced from the fit).

Discussion and summary. – If these two transi-
tions describe the same physics, then a curious question
arises. For the KT transition the critical divergence of
the SC correlation length ξ is expected to be ξ(T )∼
eB/
√
Tc/(Tc−T ) where Tc the critical temperature and B

is some non-universal number. On the other hand, near
the percolation transition one expects ξ(p)∼ (pc− p)−ν
where p is the link density (i.e. the concentration of links
for which Dij is above the threshold), pc its critical value,
and ν the correlation length critical exponent. Identify-
ing the two transitions, i.e. the critical temperature Tc
with the percolation temperature Tp, and the two critical
behaviors, implies a very specific dependence of the link
density on temperature,

p(T ) = pc+Ae
−B̃
√
(
Tp

Tp−T ). (3)

The dependence of p on T is displayed in fig. 5, along
with the solid lines, given by eq. (3), with the resulting
values of B̃ in the inset. The excellent agreement between
the observed link density and the result of eq. (3) gives
further credence to the intimate connection between the
KT transition and the percolation transition. This peculiar
dependence of the link density on temperature indicates
that as the system approaches the KT transition, the
local values of Dij decrease rapidly, as the number of
free vortices increases. Alternatively, when temperature
is reduced through the critical temperature there is an
avalanche of correlations through the system. Preliminary
tests we have done on the disordered XY model, (in which
the pair correlation amplitude is fixed and only the phases
are allowed to fluctuate), show that such avalanching
behavior cannot be fully captured in this model. A study
of the significance of the amplitude fluctuations will be the
subject of a future work.
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The percolation description should be valid, as long as
the variation of the local correlations from link to link is
larger than the thermal fluctuations in the values of these
correlations. This will ensure that the percolation path
will be robust under such fluctuations. As the disorder
decreases, the link-to-link variation decreases, and thus
at some typical weak disorder, we expect the percola-
tion picture to break down (the exact value of disorder
where this happens depends on the exact numerical pref-
actors in our analysis). It should be pointed out that
even for a perfectly clean system, we see variations of
the local correlations from link to link, due to finite-size
edge effects and our simulation errors. Interestingly, we
find empirically that in the presence of such fluctuations,
the percolation analysis remains valid all the way to zero
disorder. Nevertheless, we have chosen to remove from
fig. 5 the fit results for W = 0 to prevent possible confu-
sion between the mechanisms generating such percolation
behavior.
In this letter we have used the Metropolis Monte

Carlo technique to make two separate claims. First, we
present numerical evidence that the KT transition in the
attractive Hubbard model persists into the high disorder
regime, going beyond the range one can apply the Harris
criterion. Second, we have shown that a percolation
analysis is consistent with the KT results.
While the analysis presented here was for s-wave super-

conductors, it is interesting to note that experimental
studies of the d-wave SC transition in thin YBCO films,
gave evidence for both a percolative description [29] and
a KT description [30] of the transition. Thus, we expect
that our results can be generalized to other symmetries of
the order parameter.
The KT transition is notoriously difficult to capture

on finite lattices because of the exponential divergence
of the correlation length, and we expect our results to
suffer from finite-size effects. We have carried out tests on
smaller lattices and values of the Hubbard U (U controls
the SC coherence length) that indicate that as lattice size
is increased (or coherence length decreased) the results
flow towards the expected KT ones. Work is in progress
towards increasing the lattice sizes and finite-size scaling
analysis.
It would be interesting to investigate the critical

behavior as one increases the thickness of the sample.
Here one may expect a crossover from the KT behavior
to the mean-field BCS description. Whether percolation
still plays a role and how it is related to the BCS
transition is a question that we plan to explore in the
future.
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